
Ulm University | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Institute of Media
Informatics

Exploration of Techniques for Procedu-
ral Content Generation of Levels in Se-
rious Games
Author:
Michael Legner
800817
michael.legner@uni-ulm.de

Reviewer:
Prof. Dr.-Ing. Michael Weber
Prof. Dr. Helmuth A. Partsch

Supervisor:
Julian Frommel, Julia Greim

Year:
2014-2015

c© 2014-2015 Michael Legner

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Print: PDF-LATEX 2ε

Name: Michael Legner Matrikelnummer: 800817

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Michael Legner

1. Abstract

1. Abstract

The aim of this thesis is to explore the current state of the art in procedural content

generation for levels. Based on the gathered knowledge, a library is developed to be

used in the development of serious games.

First, the thesis provides an overview over the usage of procedural generation in com-

mercial games, research and in the so called demo scene as well as a short overview

over the field of terrain generation, one of the main subjects of this thesis. It further

introduces the term serious games and gives an overview of projects in this field. The

first part is rounded up by adaptivity in games.

Next, a very short history of video games is given as well as a definition for the term

"serious games". The topic of procedural generation is then presented with the types

of assets than can be created as well as a brief overview of the techniques used. Af-

terwards an evaluation and selection of game engines, with the selected Unity engine

being used for the development later on.

The following sections focuses on the development of the library and gives a detailed

report on the techniques used and how they were implemented. The thesis concludes

with a summary of the goals achieved, followed by the limitations of the current work and

improvements for future projects.

v

2. Acknowledgments

2. Acknowledgments

I would like to express my deep gratitude to my master thesis advisor, Prof. Dr.-Ing.

Michael Weber for sparking my interest in the field of procedural generation giving me

the chance to write this thesis.

Further I want to thank my supervisors Julian Frommel and Julia Greim for their continu-

ous support and feedback during the creating of this thesis.

I would also like to thank Prof. Dr. Timo Ropinski for his advice on terrain synthesis and

terrain sketching.

Additional thanks go out to Bernd Linder for his feedback on the thesis.

vii

Contents

1. Abstract . v

2. Acknowledgments . vii

1. Motivation 1

1.1. Serious Games . 1

1.2. Procedural Content Generation . 2

1.3. Goal . 3

2. Related Work 5

2.1. Procedural Content Generation . 5

2.2. Serious Games . 8

2.3. Adaptivity . 12

3. Theoretical Background 15

3.1. Video Games . 15

3.2. Serious Games . 16

3.3. Procedural Content Generation . 16

4. Technical Background 23

4.1. Game Engine . 23

4.2. Engine Selection . 25

4.3. Data Structures . 37

5. Application 39

5.1. General . 39

ix

Contents

5.2. Adaptivity . 47

5.3. Game Concept . 47

6. Development of a PCG Module in Unity 49

6.1. Unity Engine . 49

6.2. Procedural Content Generation Package 51

7. Conclusion 59

8. Limitations and Future Work 61

8.1. Levels . 61

8.2. Presentation . 62

8.3. Adaptivity . 63

8.4. Interfaces . 64

A. Appendix 65

A.1. Cost-Utility Analysis . 65

A.2. Engine Cost-Utility Analysis . 68

A.3. Production Rules for Mission Generation 82

x

1
Motivation

Procedural content generation has been used in games since the days of home comput-

ers such as the Commodore C64, BBC Micro or Apple II. This thesis aims to explore the

current state of the art of procedural content generation for levels and use the knowledge

gathered to develop a library, which can be used in the development of serious games.

1.1. Serious Games

Games have been played since the ancient times, with the main purpose of providing

entertainment. By the turn of the 19th century, special games were used for strategic

simulations and training, especially the military had great interest in using games this

way. The first mechanical simulations were developed, mainly for military uses such as a

riding simulator during the first world war [1].

1

1. Motivation

The book Serious Games [2] by Clark Abt was first published in 1968 and coined the

term. It describes games, whose main intention is not to entertain, but to educate and

train. At the time, video games did not exist, so instead card and boardgames are

described.

Today, it usually refers to video games following that concept. Due to the increasing

power and multimedia capabilities they are an excellent platform. But there have been

critical voices and problems of acceptance of video games as a new medium. The

wide spread use of smartphones and new interaction concepts like the motion controller

on the Nintendo Wii console attracting different groups of players and helped reducing

prejudices toward games [3].

1.2. Procedural Content Generation

Most games use pre-defined assets such as textures, models and levels that are

designed by artists and level designers. They are becoming more and more complex

and expensive to create as technology allows for more detailed creations. Also, they are

mostly static and do not change during the game, which could be intended to provide an

equal experience for all players, but also reduces the replayability of the game.

Contrary to pre-defined assets, which are stored in a specified file format and loaded

by the game, procedural content generation describes an approach using algorithms to

describe assets, which are generated at runtime of the game. By making use of random

number generators and other techniques to generate random structures an asset can

be different every time a game is played.

Procedural content generation can also be used for other purposes like saving disc

space through algorithmic modeling of assets. This has been done in the early days of

computing when resources were spare and is still very popular today in the demo scene,

where old hardware is used or strict size limits are imposed. Another application is to

create challenges scaled to the players progress and abilities, which is used in some

role-playing games.

2

1.3. Goal

1.3. Goal

The main goal of this thesis is to explore different techniques for procedural content

generation. Also, a library to use with a selected game engine should be developed that

can be used in future projects.

3

2
Related Work

This chapters gives an overview over previous work that is related to the subject matter.

2.1. Procedural Content Generation

Procedural generation has been used since the early days of computing in games for

various reasons. For some of the early games and games developed for research, the

techniques that are used for generation are known, but for most commercial games it

can only be speculated as the developers rarely release any information on it.

5

2. Related Work

2.1.1. Early Games

One of the earliest uses was to save disc space, which was scarce in the early days of

computing. With this technique, David Brabam and Ian Bell managed to have 8 galaxies

with 256 star systems each [4] on a BBC Micro home computer which was only 48

kilobytes of memory in their 1984 game Elite [5].

Other games used it to increase replayability, like the 1980 game Rogue [6] developed

by Michael Toy and Glenn Wichman at the University of California, Santa Cruz and

University of California, Berkeley [7]. The game procedurally generates dungeons for

the players to explore, fight monsters and gather items. Since it was not possible to save

the game, every time the player dies or the game starts, a new dungeon is generated.

One of the most well known games to use procedural generation is the second installment

of The Elder Scrolls series, Daggerfall [8]. The game has a vast game world, spanning

about 161.600 square kilometers with 15.000 towns, cities, villages and dungeons, which

were generated beforehand and modified. The about 750.000 inhabitants are generated

at runtime, as well as the items and a number of quests aside the main story line. [9]

2.1.2. Current Games

One of the best know games to currently use procedural generation is the action role

playing game Diablo [10]. Levels are procedurally generated as well as enemies and

items, depending on the progress and player level.

Keeping the tradition, newer Elder Scrolls games like the fourth installment Oblivion [11]

also use procedurally generation, mostly for quests, items and enemies, which scale

with the players’ level [12].

The indie game Minecraft [13] uses 3D Perlin noise for the voxel-based game worlds [14]

and spawned countless of other indie games using similar techniques.

Elite: Dangerous [15], uses procedural generation to generate solar systems and

missions, similar to its predecessor Elite[5]. The upcoming title No Man’s Sky [16]

generates an entire universe, which consisting of up to 18,446,744,073,709,551,616

planets (18 quintillion), based on a 64bit seed [17].

6

2.1. Procedural Content Generation

2.1.3. Demo Scene

Procedural generation is very popular in the demo scene, where old hardware is pushed

to its limits to show graphical fidelity that was not thought to be possible on it. Others aim

to produce impressive graphical showcases in the so called demos, which are a non-

interactive program showing off graphical fidelity. Demos are divided in categories, which

often impose strict size limits for the executable file. For example, the 4k category only

allows executables with a maximum size of 4 kilobytes [18], which makes it impossible

to use pre-designed assets. Instead, the available processing power is used to generate

assets algorithmically. A good example is the game .kkrieger [19], which uses procedural

generation for all content in the game, making it possible to put an entire, although

relatively simple, game into only 96 kilobytes of disc space[20].

2.1.4. Research

The 2009 game Galactic Arms Race [21] is an example for a game developed for

research, which uses an approach based on evolutionary algorithms to procedurally

generates weapons based on the players usage and play style [22].

The generation of game mechanics is the goal set in the approach proposed by Joris

Dormans [23] based on "key and lock" mechanisms and described as a formal grammar.

The mechanism can be taken literally, but also in a more general term, where the first

item is used to accomplish a certain task. In a different example, the key can be a

weapon and the lock an enemy, which can only be defeated with the weapon.

Fernandez-Vara et. al. [24] took on the task to generate puzzles for adventure games.

Contrary to those found in puzzle games, which generally have no context and therefore

only have to be logical, the puzzles in adventure games have to fit in the narrative of the

game. Some commercial games use randomized puzzles, but mostly as a form of copy

protection, which needed a code card or wheel [25] to solve them. Notable examples

are The Secret of Monkey Island [26] and more recently Ankh 2: Heart of Osiris [27].

But Fernandez-Vara et. al. wanted to go a step further and generate all puzzles in

an adventure game. To do so they analyzed existing games and found patterns in the

puzzles, which mostly consists of the same actions, like giving an item to a certain

7

2. Related Work

character, disassembling items and creating new ones. They developed a small game

which uses this concept to generate all puzzles. They succeeded, although the game

proved to be repetitive as the patterns did not allow for too much variation.

2.1.5. Terrain Generation

Synthesizing realistic appearing terrain dates back to work of Mandelbrot in 1983 [28],

using fractals to generate heightmaps. Other popular approaches include the midpoint

displacement algorithm introduced by Fournier et. al. [29]. Different types of gradient

noises can also be used to generate heightmaps, the most prominent being Perlin noise

developed by Ken Perlin [30] [31].

While the aforementioned approaches generate heightmaps that look authentic, they are

not based on physical principles. Erosion simulation emulates the natural process how

terrains originated. The basic process is that material from higher regions is disintegrated

and transported to lower regions, resulting in steep parts becoming more steep, while

relatively flat segments are evened out even more. Kelley et. al. [32] were the first to

introduce an approach to approximate terrain through stream simulation. A combination

of fractal modeling and erosion simulation was developed by Musgrave et. al. [33].

Terrain Sketching is a technique to give users a tool to intuitively create prominent

terrain features such as mountain ridges or rivers. The approach introduced by Zhou

et. al. [34] is based on patches that were extracted from real world elevation data and

placed along a sketch provided by the user.

2.2. Serious Games

The term Serious Game was coined by Clark Abt in his 1968 book of the same name [2].

Although focusing on card and board games, his definition of a game with the primary

focus to educate and train instead of entertain still holds up:

8

2.2. Serious Games

Reduced to its formal essence, a game is an activity among two or more

independent decision-makers seeking to achieve their objectives in some

limiting context. A more conventional definition would say that a game

is a context with rules among adversaries trying to win objectives. We are

concerned with serious games in the sense that these games have an explicit

and carefully thought-out educational purpose and are not intended to be

played primarily for amusement. [2]

In digital games, one of the decision makers is replaced by an AI or programming that

simulates a player.

Michael Zyda proposed an updated definition in his article from 2005 [35]:

a mental contest, played with a computer in accordance with specific rules

that uses entertainment to further government or corporate training, educa-

tion, health, public policy, and strategic communication objectives [35].

While the primary focus is on education, this does not mean that the games cannot

be fun. In fact, it has been shown that when the games are, people are more likely to

play them [36], something that a lot of previous educational games neglected and thus

failed[37].

2.2.1. Military

Especially the military has a high interest for realistic training simulations. They provide

much funding and developed one of the earliest serious games. In 1996, a modified

version of Doom was used for military training, called Marine Doom [38]. The major

difference is that the player dies a lot faster than in the commercial games, which

requires the player to be more careful [39]. Today, the US military still uses technology

developed for commercial games, most recently the CRYENGINE3 [40] was licensed

for this purpose [41]. Another project by the US military is Americas Army [42], a team-

based first-person shooter which is intended for recruitment [43].

Another game developed for the military is Full Spectrum Warrior [44], which saw a

commercial release for XBox in 2004 and PC and Sony Playstation in 2005. The player

9

2. Related Work

takes on the role of a marine commanding a squad of four soldiers in a middle eastern

scenario, which was developed for the commercial versions. It is a strategy game and

focuses on tactical commanding, but contrary to most other games of the genre, it is not

played from a birds eye view, but instead the limited perspective of the soldier to make

the game more realistic. The game was developed for commercial consoles initially to

save costs and because recruits showed a high affinity for video games.

2.2.2. Commercial

On of the earliest games to be considered a serious game is the 1982 game Math Grand

Prix [45] for the Atari 2006 console. While being a racing game, the cars only move if a

player answers a math question correctly.

More detailed and sophisticated is SimEarth [46], a game developed by Will Wright who

also created SimCity among other games of the "Sim"-series, which all simulate a certain

aspect.In this game, players take on a god-like role and can adjust various parameters

on a simulated planet. The game does not have a set goal, the player decides how the

planet ends up with his decisions: habitable for intelligent life, an infernal hellhole or

anything in between, with the former being considered very difficult. The game teaches

the player about the development of planets and evolutionary principles.

A popular series of games with the title Crazy Machines [47] is intended to teach

players about physics by presenting the player with physics-based puzzles. The puzzles

represent abstract machines, they are considered solved if the machine is running. To

do so, the player has access to a set of mechanical, electrical and optical parts, with

some already placed unalterable. The games have been released since 2004 on PC

and various mobile Platforms.

Among other awards, the 2013 established Deutscher Computerspielpreis (German

computer games award) has a category specific for serious games. The 2013 winner

Menschen auf der Flucht(people on the run) [48] [49] focuses on the topic of people

fleeing from a civil war in Africa, which is rarely addressed in games.

10

2.2. Serious Games

2.2.3. Research

The game modification 1378km [50] for Half-Life 2 [51] by Jens M. Stober, a student of

Karlsruhe University of Arts and Design spawned controversy due to its theme. The

name refers to the length of the border between West and East Germany and players

take roles in one of two teams: refugees who try to escape to West Germany or guards

who try to stop them. Guards who have shot refugees have to stand trial at the end

of the game, as it was during the so called Mauerschützenprozesse (wallshooting trial)

from 1994 to 2004. While some people called it "tasteless", others saw it as a new way

to relive historical events [52].

Developed to support the healing process of young cancer patients, Re-Mission [53] has

not only shown promise but positive results in a study [36]. Players take control of a so

called nanobot, navigate through the body of a cancer patient to destroy cancer cells and

even manage treatment side effects. The results show that players acquire knowledge

about the illness faster and an increased rate of self-efficacy, which is presumed to have

led to changes in the behavior of the patients regarding their illness. This effect already

showed when players played the game an hour a week, with a further increase for

players who finished the 20 level game. Further research was conducted to understand

how this effect could be replicated in future games.

A different setup was used in the project Weatherlings [54]: it uses game mechanics

from collectible card games and is played on mobile devices. Characters on the virtual

cards are used to battle others and have traits which are based on weather conditions.

Combined with real weather data, being able to forecast for a short period of time gives

the player significant advantages, but requires knowledge about weather and how it

changes.

The game Atomic Orchid is based on a mixed reality approach, similar to the popular

game Ingress [55]. Most players are equipped with a mobile device tracking their position

and enabling them to complete objectives in a fictional scenario after a nuclear explosion.

Other players take a commanding role in form of the so called HQ which is played from

a computer, where they see the whole map and more importantly radioactive clouds,

whereas the field players only see the level of radiation at their current position. Players

11

2. Related Work

can communicate via text messages.

What all those examples have in common is that they rely on proven gameplay mechan-

ics. This seems like a good idea, as it lowers the bar to enter a game and serves as a

motivator for the players. Early educational games have a reputation for not being fun

and as such failed to motivate players, but instead were only seen as another tool to

force education on them [37].

2.3. Adaptivity

This sections gives a brief overview how adaptive systems haven been used in com-

mercial games, serious games and research. They usually rely on the same or similar

techniques as procedural content generation, the major difference is that they have to

adjust during the game and are not generated once before the game starts.

2.3.1. Commercial Entertainment Games

Epic Games’ multiplayer first-person shooter Unreal Tournament 2004 [56] has eight

difficulty settings when playing against computer controlled opponents (bots). The

difficulty can also be set to automatically adjusting, which means the difficulty is switched

in the game according to the players performance. In the authors experience, the

changes are very noticeable to the player, as the behavior and skill of the bots vary

widely.

The massivly multiplayer online role-playing game (MMORPG) World of WarCraft [57]

introduced a system called Flexible Raid in patch 5.4 [58]. Raids are portions of the

game available to groups of players, providing the most challenge in the game and the

best rewards. Previously, raids had fixed group sizes for 10, 20, 25 or 40 players. Flexible

raids scale the challenge according to the size of the group, which can range from 11 to

25 players.

MMORPGs usually consist of a vast world, which is segmented into areas which are

designed for players of a specific level. As a high level player, coming back to areas

12

2.3. Adaptivity

that are meant for lower level players can be boring as the enemies are too weak to

provide any reasonable challenge. To counter this problem, Guild Wars 2 [59] introduced

a system called "dynamic level adjustment" [60], which scales the players level and

attributes to match with the current area.

The Elder Scrolls IV: Oblivion [11] uses a system to scale enemies according to the

players level and attributes to create a constant challenge [12]. A similar system [61] is

employed in Fallout 3 [62], a role-playing game of the same developer, Bethesda Game

Studios.

Left 4 Dead 2 [63], a cooperative first-person shooter, introduced a system to dynamically

change the game’s difficulty and pacing, called the "AI Director". It monitors players

progress, location and status and places enemies and items accordingly. The goal

is to create a different experience every time, which the developers call "procedural

narrative" [64].

2.3.2. Serious Games

Göbel et al. [65] used adaptation in serious games developed for rehabilitation. Two

games were created and both use sensors to monitor the players physical condition.

The goal is to have players training without overburdening them, and the sensor data is

used to adjust length and intensity to prevent doing more harm.

By using a player model based on knowledge space theory [66], Göbel et at. [67] were

able to use adaptation in narrative based games. They divided the mode according to

the three defined contexts learning, narrative and gaming to store specific information

and used them to adapt accordingly.

2.3.3. Research

Game developer veteran Scott Miller proposed that instead of having difficulty levels

for the player to chose, the game should adapt to the players skill and progress with a

concept he calls "auto-dynamic difficulty" [68]. He proposes that only a few variables

measured in the game are enough to make a reasonable assumption about the players

13

2. Related Work

skill level. Then, other variables in the game that are not directly visible to the player

are set accordingly, this should also be done subtle so that the player does not notice

something is changing.

Based on this idea, which was initially tailored toward the 2001 game Max Payne [69],

Charles et al. [70] developed a generalized model to determine the players skill and

preferences. This is intended to adapt the game to cater to the individual player, instead

of groups as most commercial games are designed. Games can adapt to the players

skill and his preference, but the system can also be used to prevent players from

exploiting oversights in the game design. For example, if a strategy or game mechanic

is unintentional extremely powerful, players are very likely to use them exclusively to

progress through the game faster and easier, at the expense of their experience of having

beaten a challenge. Instead of using simple variables, which are not generalized enough

to be used in games, they use an approach based on neural networks to determine the

player model.

14

3
Theoretical Background

This chapter gives a brief introduction to video games in general and serious games

in particular. Additionally, a brief overview of procedural content generation, the core

concepts and techniques and how they are used in games.

3.1. Video Games

The term video game usually refers to games that are played on some sort of electronic

device. The 1947 cathode ray tube amusement device [71] [72] is recognized as the

first video game. Known for its usage of radar equipment as graphical display is tennis

for two [73] developed and shown in 1958. As all previous video games were conducted

at universities and other research facilities, Nolan Bushnell and Ralph Baer are seen as

the men who brought video games to the commercial market. Nolan Bushnell is best

15

3. Theoretical Background

known for arcade machines and mostly Pong [74], which is often misconceived as the

first video game, although it was a very influential. Ralph Baer is referred to as the father

of home consoles, with his invention of the Magnavox Odyssey [75].

Over the following decades, vast improvements in processing power and memory

available led to more beautiful presentations, complex gameplay and the ability to tell

film-like stories in games. For the longest time, video games haven been seen as

something only for children or nerds, which sit in their basement all day. New input

devices like touchscreens used in the iPhone or Nintendo DS and motion controls as

used in the Nintendo Wii have opened new markets and brought video games to all

parts of society [3].

3.2. Serious Games

They major difference of serious games is that contrary to their entertainment-focused

counterparts, the intention is to train and teach. This does not mean that they cannot

be fun, especially since fun is major motivator and a reason why previous educational

games failed with their intentions [37].

3.3. Procedural Content Generation

This section gives an overview of procedural content generation, what can be generated,

which techniques are used in games in the past and present and why they are used in

the first place.

3.3.1. Generateable Assets

Procedural content generation has been used in video games since the early days, for

multiple reasons. This sections give a brief overview on what assets are commonly

generated in games.

16

3.3. Procedural Content Generation

Levels

Procedural generation of levels has been used in games to increase replay-ability and is

a major part of the so called rogue-like games, which borrow concepts from the game

Rogue [6], which was developed around 1980 by Michael Toy and Glenn Wichman at the

University of California, Santa Cruz and University of California, Berkeley [7]. The game

procedurally generates dungeons for the player to explore, fight creatures and collect

items. One key concept is the so called permadeath, which means as soon as the player

dies, the game is over and all progress is lost, there is no way to save progress and

load it in case of failure. The player has to start again and will most likely get a different

dungeon. More recent games introduce some kind of progression system, for example

items that become available in future playthroughs once unlocked or global experience

increasing the starting attributes. An example is the 2015 game Ironcast [76].

Based on the same techniques procedural generation can be used to create vast worlds,

which are then modified by level designers. This technique is used to speed up the level

creation process [77].

Another usage of procedural generation is to save disc space. Early home computers

and consoles had very limited memory, storing a huge game world was not possible.

Algorithms to generate levels take a lot less space up than pre-designed assets and

only parts could be generated depending on the state of the game. As it was mostly not

intended to generate random levels, the same seed for the generation was used every

time, recreating the same levels every time, as seen in the game Elite [5] released in

1984. Todays systems have vast amounts of memory and processing power, but these

techniques are still heavily used in the demo-scene.

A major part of creating a realistic world is vegetation. Creating it manually can be

tedious, but there are solutions for it by using a form of formal grammar called L-Systems.

For details see section 3.3.2 in this chapter.

Textures

Procedurally generating textures has several advantages: the disc space requirement is

very low as they can be generated with few lines of code. One problem with textures

17

3. Theoretical Background

in general is that they have to be made specific for a piece of geometry or otherwise

they do not look fitting. Procedurally generated textures can be generated depending on

the geometry and fit perfectly. Another problem with premade textures is due to their

limited resolution, they are usually repeated in tiles when applied to geometry, which is

noticeable and result in a less authentic look. Technologies like MegaTexture [78] can

counter this problem, but at the expense of requiring huge amounts of storage space and

textures have to be streamed to the graphics memory, resulting in loading artifacts when

quickly adjusting the camera. Procedural textures can be generated with any resolution

needed and with a few adjustments, variations of textures can be generated, for example

different types of wood.

The major downside of procedural textures is due to their random nature, they are mostly

useful for natural-looking textures like wood, marble or grass, as minor differences are

not a problem but mostly desirable. The more specific features a texture should have,

the more the process has to be controlled and is therefore slowed down as complexity

increases. At some point, creating the texture manually is faster and easier.

Other

In role playing games, items can be procedurally generated. It is prominently used in the

action role playing game series Diablo [10]. While the categories and graphics are set,

the attributes are randomly generated depending on the progress of the game. A similar

technique is used to scale enemies to the players level and progress, creating a constant

challenge for the player, which is heavily used in the Elder Scrolls games [8] [11]

3.3.2. Base Techniques

This sections provides an overview over some techniques used in procedural content

generation, with a focus on those used in the library and proof of concept game described

in chapter 5. Other techniques are only briefly discussed.

18

3.3. Procedural Content Generation

Noise

Various noise functions have been used for procedural generation since the very begin-

ning. One of the most popular approaches was developed by Ken Perlin in 1985 [30].

The goal is to generate random structures instead of white noise. Since the generated

structures are reminiscent of terrain heightmaps, they are often used for that purpose,

although they are in no way physically correct.

Perlin noise uses gradients, which represent the slope of the tangent of the graph of

a function[79]. As a type of gradient noise, it is generated by first generating pseudo-

random gradients for every cell of an n-dimensional grid. The gradients should not be

completely random, Perlin uses a specialized hash function which returns a value from

a short set of randomized values. Next, interpolation between the gradients is used to

create the noise function, usually polynomials are used. To further increase the natural

look of the noise, a number of derivative functions are created and added up. The

derivatives are created by doubling the frequency, which results in halving the amplitude.

Thus the frequencies have a ration of 1:2 to each other and form "octaves".

The original source code by Ken Perlin is available [80], but written in a very compact

manner which makes it almost necessary to decipher it. Also, the original algorithm’s

complexity has a complexity of O(n3), a version called Simplex noise that has a complex-

ity of O(n2) was developed by Ken Perlin in 2001 and patented [31] [81] for dimensions

of three and up. For a more detailed explanation of the method see the technical report

by Whilem Burger [82].

Another application for noise is the generation of textures. Having a parametric descrip-

tion of a texture makes it possible to generate variations of textures, for example different

types of wood. They are mostly used to create textures reminiscent of natural materials

like wood or marble. Another usages is creating clouds, as 2D or 3D textures.

Formal Grammars

The concept of formal grammars dates back to the work of Noam Chomsky [83] [84].

They are used to describe and generate formal languages. They consist of four parts: a

start symbol S, a set of productions rules P , a set of non-terminal symbols N (which

19

3. Theoretical Background

Figure 3.1.: Example of noise created with Perlin noise

includes the start symbol) and a set of terminal symbols Σ. They usually consist of text

strings. The start symbol describes the initial state, while the production rules specify

how the start symbol and non-terminal symbols can be replaced over the course of an

iterative process called "production". Production ends when there are no non-terminal

symbols left or can be limited by a set number of productions. An example for a simple

grammar with start symbol S and terminal symbols a and b is given in figure 3.2.

S → aSb
S → ab

Figure 3.2.: Example of a simple formal grammar

Formal grammars have multiple uses, for example to create a parser for a formal

language, commonly used in compiler construction. For procedural content generation

they can be used to create missions as used by Joris Dormans [85] [86]. He uses a

different form of grammars known as graph grammars. They are unique as for non-

terminal and terminal symbols are not strings but nodes in a graph. To form the geometric

structure of the level, shape grammars are used and consist of shapes.

Another popular type of formal grammars called Lindenmayer systems (or short L-

Systems) are used to generate vegetation. They were developed by Aristid Lindenmayer

in 1968 [87] as a way to describe the structure of plants. Similar to the usage of formal

grammars with formal languages, L-Systems can be used to generate vegetation the

same way. They are heavily used in the middleware Speedtree [88].

20

3.3. Procedural Content Generation

Other Techniques

Evolutionary Algorithms are commonly used to find viable solutions to optimization

problems in a reasonable amount of time. The perfect solution is often hard to find, but

if a good one is already sufficient they are usually preferred because they are much

faster to find. Based on principles found in evolution, where fitting solutions survive,

evolutionary algorithms work on a set of different solutions and test them against a

problem. Good ones are taken into the next iteration and for the others new ones based

on the good solutions are generated. Other approaches include tournaments, where

solutions are set against each others and the better one moves on to the next round.

In games, evolutionary algorithms are rarely used, most likely due to the amount of

processing power required by them alone[89]. A notable exception is the action rpg

Galactic Arms Race [21], which employs an evolutionary approach to generate weapons

based on the players playstyle [22] [90].

Celluar Automata have been used to create cave structures in games. They consist

of a grid of cells that have one of several defined states. Every cell has a defined

neighborhood, usually the directly adjacent cells. By creating so called "generations"

through iterating, the states of the neighborhood cells are changed over time according

to a function defined, which can be displayed as an animation [91]. One of the most

famous mathematical problems that can be described through a celluar automaton is

Conway’s Game of Life [92].

Celluar automata haven been used by Johnson et. al. [93] to generate caves for rouge-

like games, with the states being floor, wall or rock. The grid is initialized with random

values, over which is iterated a set number of times.

Aside from procedural content generation, cellular automata haven also been proposed

to be used in cryptography to generate pseudo-random numbers [94] and error correction

coding [95].

Erosion Simulation is an alternative method to generate terrain by simulating the

natural process of erosion. The basic principle is that due to various natural effects,

21

3. Theoretical Background

material from higher levels is dissolved and transported to lower regions, eventually

stopping when filling up irregularities. This means that steep parts become steeper and

relatively flat sections are evened out even more.

These models are usually more accurate than the landscapes generated by noise

functions that are trying to recreate the effect, but are also far more complex to implement.

There is no built-in mechanism to ensure they are useful for games. Olsen et. al. [96]

developed an approach which was implemented as cellular automaton and has been

used in the commercial realtime strategy game Tribal Trouble [97], whose source code

was released in 2014 [98]. Another example of implementing erosion simulation is using

fluid simulation, as it was used by Neidhold et al. [99].

3.3.3. Discussion

While all the mentioned techniques provide good results in their specific field, a major

challenge to use procedural content generation in a game is to ensure that the generated

content is useful.

For custom generators, e.g. for items and enemies, the number of attributes is limited

and can be kept within limits quite easily. But they still need lots of testing and tweaking,

a negative example is the second installment of the The Elder Scrolls franchise, Dagger-

fall [8]. The game is infamous for generating pretty much everything: items, enemies,

quests and large parts of the world. But this resulted in very mixed results as the random

nature of many aspects of the game created illogical quests and therefore disgruntled

many gamers [100].

With more complex content like a landscape, generating a suitable result is even harder.

While the result may look good, all relevant places have to be reachable by the player.

So generating a landscape without using further information can lead to results that

has all the features of a landscape, but is useless for a game. The key is to generate

something random, but which has a certain structure or satisfies constraints that keep

the randomness at bay.

22

4
Technical Background

This chapter states the technical background of the thesis. It gives a brief introduction

to game engines in general and documents the process used to select a game engine

suitable for the thesis. Additionally, some important technical terms are detailed.

4.1. Game Engine

A game engine in general is a framework designed for developing video games. The

main functionality include real time rendering of 2D and/or 3D graphics, input handling,

audio output and physics simulation including collision detection. As the capabilities of

hardware increased, other aspects such as scripting and networking became important

and are a basic requirement for any game engine today.

With the limited resources available and the major differences on early hardware plat-

23

4. Technical Background

forms such as the Atari 2600/Atari VCS gaming console and home computers such as

the Commodore C64, BBC Micro or Apple II, every game had to be written from scratch

and adapted to the platform to get optimal performance. More performance available

made it possible to abstract the technical aspects from the gameplay itself, helping

development and portability of games. Another factor was the upcoming modding scene:

players found ways to modify or hack a game, often in destructive ways. John Carmack

of id software saw this as an opportunity and for their game Doom he developed a

system to modify the game without overwriting existing parts [101]. In its successor

Quake, the abstraction was complete as the gameplay code was written in the in-house

developed language simplified version of C called "QuakeC" which is compiled into

bytecode and interpreted at runtime [102]. Both engines created for Doom and Quake

haven been licensed to other game companies [103].

The games industry today is a large market, even surpassing the film industry in terms of

its net worth [104], it is also a very diverse one. The so called "Triple A" titles with budgets

of 7 figures or higher developed by teams of hundreds of people and advertised with

an equal amount of money. These games are usually based on in-house developments

or big engines always trying to be at the technical edge like the Unreal Engine by Epic

Games [105] and CRYENGINE by Cryteck [40]. Developments costs have skyrocketed

over the years and big advancements in graphical fidelity are usually tied to the release

of a new generation of gaming consoles[106].

Contrary to big budget productions and game developers, in the last years more and

more small, independent developers have started to develop games on a much smaller

budget, usually resulting in less graphical fidelity with a focus on gameplay and stylized

graphics. They usually use different development toolkits created with the smaller scale

in mind, such as Haxe [107] or highly specialized frameworks such as RPGMaker [108].

A new market has opened in the form of mobile games, with vastly different controls

and new challenges such as a limited battery life. While quite powerful, they have

significantly less performance than consoles and gaming PCs, which were the dominant

gaming platforms for decades. Developing for mobile platforms is generally cheaper,

comparable to independent games, but still portability and the ability to share assets

and code is advantageous in terms of development costs. With his in mind, new game

24

4.2. Engine Selection

engines focus on portability and asset sharing, probably the most popular right now

being Unity3D [109].

4.2. Engine Selection

One of the first goals of this thesis is to find a game engine suitable for the needs of

serious games. Finding a suitable engine is critical as it will influence the course of the

thesis and is not easily revertible, therefore the decision making process has to be done

carefully.

The engine must have all the functionality needed to start developing a game without

having to make changes in its core. The learning curve should not be too steep, as

it will be used by others without major experience in software development. It would

be beneficial if the gameplay code can be written in a language different than the core,

which would make development easier.

For an early evaluation, a cost-utility analysis was done and resulted in three potential

candidates, which then were examined in detail. With those candidates, a small game

was developed to test its capabilities, ease of use and time needed to familiarize with

the engine.

For procedural content generation, a suitable approach has to be chosen. Criteria are

complexity of implementation, use in serious and commercial games, and performance.

Also, the randomness of the results has to be controlled, not all will be suited as they

have to be playable.

A small game was implemented using the game engine with procedural content genera-

tion as a proof of concept. It should be designed to have multiple levels of difficulty which

affects the generation process. Manual adjustment by the player is sufficient, changing

the difficulty according to the players performance and physical condition is planned for

the future. The differences in the generated content should be as subtle as possible,

because if the players notices that the difficulty is raising or dropping, it could have an

impact on his behavior.

25

4. Technical Background

Score Weight
0 -

1-2 nice to have
3-5 medium
6-8 important
9 very important

(a) Weights used in cost-utility analysis

Score Degree of Fulfillment
0 not available
1 poor
2 fair
3 satisfactory
4 good
5 very good

(b) degrees of fulfillment used in cost-utility anal-
ysis

4.2.1. Cost-utility Analysis

Game development is not only a big industry, but also a widespread hobby among

software developers. As a result, an enormous number of commercial and free, open

and closed source game engines have been developed. The Wikipedia List of Game

Engines [110] lists 253 engines and libraries in total, while the DevDB [111] on the

developer resource website www.devmaster.net [112] lists 368 engines. It is not

possible to try every one of them therefore they have to be filtered to a bearable number.

Beforehand, engines that are not flexible enough are eliminated, mostly 2D and 2.5D

engines and engines that specialize in a certain genre.

Cost-utility analysis is a form of financial analysis. In this work the so called "Nutzwert-

analyse" is used, which differs from the Cost-utility analysis in English speaking contexts,

were is mostly used in health economics. The basic idea is to define criteria, categorize

and weight them. The process itself is by far not as elaborate as other processes in

decision making, but here the main use is to filter a vast amount of candidates in a short

time period. The weights and degree of fulfillment are set subjective and were updated

multiple times over the course of the thesis.

The weights are set from 0 (not applicable) to 9 (very important), for a detailed list see

table 4.1a. Degrees of fulfillment are set on a scale from 0 (not available) to 5 (very

good), detailed in table 4.1b.

As reference, DevDB is used as it provides more information about the activity of the

engine, with additional candidates added by recommendations of the research staff at

Ulm University. First, only active engines were considered and all without or with a very

26

www.devmaster.net

4.2. Engine Selection

small number of user reviews were eliminated. The list of remaining engines can be

found in table A.1. Next, the cost-utility analysis is done, the criteria are listed in table A.2.

The following section describes the criteria in detail and the one afterwards discusses

the results.

Selected Engines The selection consists of some well known and lesser know engines.

Generally, open source solutions are preferred, as they provide the ability to change the

core if needed (which is not intended) and independence from companies. Most of the

proprietary engines have multiple licensing levels, including access to source code but

only for a large sum, which is not suited for an academic budget. Some engines are

only available through a licensing fee, but may be available for academic purposes at

a reduced fee or even without cost. This is the case for the Unreal Development Kit,

which is a free version based on the Unreal Engine 3 by Epic Games. It was initially not

a candidate, since the focus of the engine is on big budget titles. But with the increasing

importance of small, independent game developer for the industry, having a cheaper

version with less functionality can attract small developer teams and even students.

Therefore, Epic Games (and other companies) have started a program targeted to get

more academic users into Unreal Engine 4 [113].

Criteria

In this section, the criteria used in the cost-value analysis are detailed. An overview is

shown in table A.2.

License While game engines with open source licenses are generally preferred, closed

source solutions are not ruled out if other criteria have good scores. Therefore, open

source licenses get a four times higher weight than closed source, with the other scored

with 0.

Technical Aspects Technical aspects cover criteria programming language, supported

functionality, architecture and supported platforms.

27

4. Technical Background

Most game engines are written in C/C++, mostly for performance reasons, but some can

use code written in a different language through bindings or interpreters such as Python

or .NET languages such as C#. This is beneficial as C/C++ is not in the curriculum of the

major lectures at Ulm University, which mainly focuses on Java as initial programming

language. Since most students are unfamiliar with it, they tend to have an avoidance of

lower layered languages and often only heard of the downsides (pointer arithmetic in

particular), at least having an option to write code in a different language would benefit

adoption rate. Changes at the core of the engine are not intended.

Functionality is not a key point, as most engines support all the basic functions in terms

of graphics, sound and input. Advanced features, especially in graphics, are not a hard

requirement.

Supported platforms focus mainly on computers with Windows, Linux or MacOS. Having

the ability to deploy a game in a browser environment would benefit testing and conduct-

ing studies as setup time would basically be non-existent. Mobile platforms, in particular

Apple iOS and Android would also be beneficial. Availability of either of them or both will

be rewarded with additional points. Additional platforms such as gaming consoles are of

no additional value and are not rewarded with points.

Activity of Developers Since the engine decided on will be used in future projects, it

should be actively developed and maintained by the developers to avoid running into a

dead end or having to do more work on our own which not is not tied in with developing

a game, but fixing bugs and developing additional functionality. Updates should be

released in regular cycles. Having developers actively interacting with the community

would benefit the learning curve or time needed to fix problems, as quick help would be

available.

Tool Support Having the ability to use the engine and develop games in familiar

Integrated Development Environment (IDE) would be beneficial in terms of familiarization

with the engine. In our case, eclipse is the standard IDE, although mostly students can

choose what they want to use as long as all needed functionality is available, but are on

their own then. The ability to use assets from artistic tools to create models, animations

28

4.2. Engine Selection

and textures would also be of benefit. If the engine itself provides tools for tasks like

programming, modeling or level design it would reduce development time and the need

to find compatible solutions.

Community An engine can be good on paper, but if it is not widely used it is for benefit

us. A widespread engine with experienced users can help easing the learning curve

and solving problems quickly. Generally the number of active projects and their general

progress is a good indicator, although not all problems are rooted in the used technology.

Ease of Learning The most important aspect is the ease of learning of the engine. As

the projects will mostly be developed by students, it cannot be expected from them to

have much experience in developing projects of this scope, they are actually meant to

gather experience first hand. Therefore, having a too complex engine is of no benefit.

A steep learning curve is probably the most significant aspect, which can be eased by

having sufficient literature (ideally both analog and digital) and tutorials. Seeing the

scope of a game engine, good documentation is a must and would be beneficial to

developers. Having support directly from the developers can also be a great help, as

their knowledge of the inner workings of the engine usually surpasses that of an average

user which would benefit in solving problems related more to the internals. This criteria

is closely tied in with the general activity of the developers.

4.2.2. Preliminary Results

In this section, the results of the cost-utility analysis are presented and discussed. For

detailed results, the tables for each engine are found in the appendix A.2.

Open Source Game Engines

The Blender Game Engine is an extension to the modeling tool Blender [114]. Overall it

is a decent engine, but it lacks developer support and in the future it will be developed to

be a tool for game prototypes, architectural walkthroughs and scientific simulators [115],

29

4. Technical Background

which is not the direction we want and is most likely going to be a dead end.

Cafu is also a decent engine with an outdated feature set for visuals. It seems like

development has not stopped, but slowed down a great deal to the point where the

commits to the source code version control system only appear weeks apart, are small

and the last official release dates back to 2012 - not a good outlook and a potential dead

end. Crystal Space is a very similar case, both have not been used in a lot of projects

and activity by developers and users is decent.

Irrlicht is probably one of the oldest still developed engines and is used in quite a few

open source and commercial projects, but the last official release was in 2013, commits

to their version control system have slowed down. The biggest downside is that it is

mainly a graphics engine, everything else has to be provided by add-ons which might

lead into a dead end if development of the plugins stopped or the interfaces in the

core engine changes. Overall a solid engine, but it lacks additional tools and steady

development.

jMonkey is one of the two Java-based engine in this comparison and has a good set

of features with everything needed from a programmers standpoint and good platform

support. Learning curve seems good and quite a few projects are active, but it seems

that the development of the engine has slowed down more and more over the last

months. A major downside is the lack of support for common file formats of modeling

tools, only Blender models are currently supported. It is possible to run jMonkey projects

in a browser, but only as a Java Applet, which got a bad reputation for being a security

risk due to flaws in the Java Runtime Environment.

Its competitor libgdx is heavily developed with new releases every couple of weeks and

an comparable set of features. It also only supports a few model data types, mostly from

open source software like Blender and brings some editors with it, but mostly for minor

task like creating particles. On the plus side it supports all needed platforms and due its

highly active development, libgdx makes it into the final evaluation.

OGRE is a very old engine but still actively developed, with a big community and many

tutorials and literature available. Despite having a competitive score, it will not be

evaluated in the final round. The reason is that it is mainly a graphics engine and

all additional functionality is provided via add ons. This could be fatal if they are not

30

4.2. Engine Selection

developed by the core-developers and interfaces change, which is a risk not worth taking

and the other features are not enough to justify it.

The last of the open source engines is Panda3D, formerly developed by Disney as

closed source and now in the hands of the Carnegie Mellon University. It has a solid

feature set and has been used in a good number of free and commercial projects. It

is a solid engine overall, but will not be considered further as it has almost no active

developers. It seems like it is only developed if a student of CMU uses the engine, but

otherwise not much happens. And it does not stand out in any other criteria to justify a

place in the final evaluation.

Closed Source Free of Charge Engines

Esenthel is very interesting engine with a feature set comparable to commercial engines

and passable licencing fees if desired, but they are bound to the number of developers.

The community and number of projects seems small, but is highly active as is the devel-

opment of the engine. It supports all desired platforms and has a good number of tools

with it. The biggest downside is that it can only be used with C/C++ code, which might

make it hard to convince student to use the engine, but due to its otherwise high score it

is included in the final round of evaluation.

The NeoAxis engine is based on OGRE, but greatly enhanced by visual updates, more

features and editors. It is actively developed, with major releases every six months. It is

overall a solid engine, but lacks features that stand out and lacks documentation and

tutorials.

Shiva 3D seem overall like a solid engine, supported platforms and a features set com-

petitive to commercial engines stand out. The downside is that development seems

rather troublesome, the next big version is overdue for 2 years with a beta version only

released recently, the last major version being more than four years old with a small bug

fix version released in December 2013. Despite otherwise seeming like a good engine,

this could prove troublesome which is reflected in the scores and therefore it does not

make it into the final round.

Unity is probably one of the most used engines at the moment, from small two man

31

4. Technical Background

teams up to big budge productions. Its feature set is unparalleled by most other engines,

especially in provided tools which make almost every other software (including an IDE

and modeling tools) unnecessary for small projects. It is very actively developed, well

documented and the large community provides much help and tutorials, in addition to

the already huge number provided by the developer. It supports all desired platforms

and gameplay code can be written in convenient languages (C#, Boo (Python inspired

language) and UnityScript (JavaScript dialect)). In combination, Unity achieves the

highest score of all engines and is therefore included in the final round of evaluation.

A bit of special place takes the Unreal Development Kit and Unreal Engine 4 in

this comparison. Both are mostly used by big budget products with professionals of

all needed crafts involved. This makes for a features set even outperforming Unity,

especially in graphical fidelity, where the engine is one of the most impressive on the

market. To bring smaller teams to use the engine, developer Epic Games has released

the UDK for free, which is based on the Unreal Engine 3. It has all the major features

and a huge amount of tools provided with it. The downside is the complexity, which

might be too much for small projects and students not familiar with a software this size

and coded in C++. Additionally, the current Unreal Engine 4 is available for academic

use for free (but still 5% of gross revenue has to be paid for sold products [116], which is

not the case here), but with even more functionality and complexity, it is left out of the

final round of evaluation despite having the second highest score over all. But it might

be a viable option in the future, especially if students already worked with it.

Results

In the final round of evaluation, three engines will be looked at in detail: Unity (Score:

486), Esenthel (437) and libgdx (429). Every engine will be used to develop a small game

to see how fast a usable result is possible and the amount of familiarization needed.

32

4.2. Engine Selection

4.2.3. Detailed Evaluation

After the cost-utility analysis, three candidates have been chose to be further evaluated in

detail: libgdx, Esenthel and Unity which achieved the highest scores overall. Although

having a very high score also, the Unreal Engine 4 was left out as its primary focus on

big budget production will likely result in a steep learning curve, which is not suitable for

our needs.

For the remaining candidates, test installations will be done and a small game will be

developed with each to find out how quickly and easily first results can be achieved. To

learn more about the engine, documentation and tutorials will be studied in greater detail

than before.

libgdx

libgdx is a game engine in the most classical way and the only open source engine in this

detailed evaluation. It does not bring much in terms of additional tools and everything is

done in code. It operates rather near the core of the engine, as shown in the examples,

updates are done in a render() callback method. It can be decoupled from it by using

an event-based system, otherwise update frequency depends on the frame rate which

can lead to unexpected side effects. Although the engine is written entirely in Java (with

bindings to OpenGL), performance is very good.

It comes with an installer tool which can generate projects for eclipse and IdeaJ, but

this option is well hidden. Otherwise a generic Gradle [117] project is generated which

can be imported in various IDEs given they are compatible or a plugin is installed. The

installer downloads the latest version of libgdx and all required libraries, in particular

the Java build system Gradle [117]. It supports all major platforms and only very little

platform-specific code has to be written.

libgdx is relatively new and is actively developed with new builds almost every week.

They usually do not break older programs, although it has happened a few times in the

past. There is a good amount of tutorials, although one has to be careful if its based on

an older and outdated version. The documentation by the developers is sufficient and

the provided examples provide a good start, but advanced techniques are only used in

33

4. Technical Background

the examples without further explanation and use sophisticated programing techniques

common in game engines, especially matrix transformations, but are hard to understand

without proper documentation and prior knowledge.

From a procedurally generated content (PCG) standpoint it should not be too difficult.

libgdx does support only a few types of geometry data, among them the Blender format

which also allows to import complete scenes and a json-based format which saves the

vertex coordinates.

Esenthel

Esenthel is a closed source game engine written in C++ with a lot of advanced fea-

tures. There is no free version, only a demo version which misses critical features like

deployment to release. Licenses are rather cheap, with a monthly subscription model for

about 10 US-dollars a month, a license priced 19 US-dollars a month gives access to

the source code. Modern rendering techniques are supported such as Bump Mapping,

Tesselation and Screen Space Ambient Occlusion [118]. Although code is written in C++

only, there haven been made changes to circumvent some of the quirks, for example

the order of function declaration does not matter and prototypes are not needed, which

makes the code somewhat reminiscent of Java or C#, but at certain points relies on C++

techniques like pointers. The engine does not bring a C++ compiler and debugger but

instead needs external tools. On Windows, it relies on the infrastructure provided by

Microsofts Visual Studio. It uses a client-server-structure at all times, even if only one

developer wants to work he first has to start the server and then open the project, which

essentially starts the client environment. It features a code editor with auto completion

(although sometimes overzealous), a world editor and tools to edit models and textures

to a certain degree. They are fine for beginners, advanced users might want to use

other, more specialized tools. It supports a good number of formats for assets, as long

as they are not patent protected like music in mp3-format. Import can be done via drag

& drop and every asset is given an unique identifier (UID). The included editors displays

a defined name instead of the UID, but as soon as the project is exported, for example

for debugging, only the UIDs are visible which can be confusing. The code editor itself is

34

4.2. Engine Selection

good, but to get its full potential it requires a certain workflow, otherwise development

can be painful. Other tools include a complete GUI System supporting most standard

graphical user interface (GUI) elements like labels, buttons and drop down menus.

Esenthel is a rather unknown engine with a small community, therefore the number of

tutorials and additional material is very limited. The official forum is very active with the

main developer himself answering a lot of questions directly. Most of his answers though

are very technical, often consisting of only code using advanced C++ concepts. The

official tutorials consist only of code, which is well documented but still only code. They

can be found on the server as its own tutorial project and cover all major aspects of the

game engine and its features. Additionally, there are video tutorials covering other topics

like the usage of the graphical editors.

Having an integrated project structure can be a good thing, but Esenthel takes the idea

a bit too far. The projects can be structured with sub folders, but they appear only in

the editor. On the hard disk, in the projects directory are folders with seemingly random

names, which contain some named files and a lot of files with random names and no

structure. These are all the assets and code which makes it hard to identify them and

can be painful to use with a version control system. The server software can be installed

on a server for collaborative work, but has no version control integrated which is a must

in modern software development.

Since all code is written in C++, for deploying an app for Android the native development

kit is required as well as the very outdated Android SDKs Version 1.7 and 2.3.3 as

well as Java Development Kit version 7, version 8 is not supported. Once they are all

installed and correctly configured, deployment runs smooth. Deployment to a web-based

environment could not be tested as only the demo version was used for testing, which

does not support this feature.

Unity

Unity is a closed source engine with a huge following, no doubt due to the licensing

model which gives the basic version away for free which also allows commercial releases.

The pro-version has advanced features especially in the rendering and performance

35

4. Technical Background

department and is useful for big budget productions. Unity claims to have a market share

of 45% with 3.3 million registered developers and over 600 million players [119]. It was

also one of the first engines to lay its focus on easy multiplatform development. It is

mainly used for small games developed my small and medium sized, independent game

developers, but is also used for big budget productions like Wasteland 2 [120] with an

approximate budget of over 3 million us dollars from crowd funding [121].

Unity deviates from the other engines in this evaluation due to its focus on scripting the

game behavior and does not require knowledge about game engines and computer

graphics in general, but they can be useful to increase performance. The basic element

is the GameObject, which can have multiple components like scripts, sounds, geometry

and colliders used for hit detection. Every GameObject handles its own behavior

in the attached scripts, which can be written in C#, Boo (Python inspired language on

Microsofts’ dotNet platform) or UnityScript (JavaScript derivate), communication with

other objects is done via an internal messaging system or the event system of dotNet.

The game loop is not directly visible to the developer, instead every GameObject

with a script component attached that derives from the class MonoBehaviour has

an Update() callback which gets called every time a new frame is rendered. For

programming, the MonoDevelop IDE is brought along but can be replaced with any other

external editor.

Unity supports a lot of formats for assets like textures, sounds and models and converts

them to a suitable format on import. All assets are organized in a folder of the same

name which can have user created sub-folders for structuring. Most of the work can be

done in a graphical interface, from creating objects to adjusting parameters, even while

the game is running and the changes are immediately shown. Additional assets can

be downloaded and bought from an integrated asset store. A physics library for both

3D and 2D environments is integrated and can be used though scripts or component

properties. A great deal of changes can be done through the graphical interface, but it

takes some getting used to, especially in finding all the relevant options. Optionally, a

server software for collaborative work and version control is available for purchase [122].

Of all the engines in this evaluation, Unity certainly has the biggest community by far and

therefore an enormous amount of tutorials and additional material are available: books,

36

4.3. Data Structures

videos and magazine articles. The developers provide a manual with guides in text and

video form to all relevant information and always up to date with the current version of

the engine.

4.2.4. Result

libgdx is a good engine overall with everything that is required but lacks features to help

developers and tool support. While it would be a good engine to use for this thesis, I

believe it should get more development time to stabilize its development and for the

development of more tools.

Esenthel feels a bit like golden cage: very good feature wise, but almost no control over it.

Combined with the fact that C++ code is required which is not in the standard curriculum

of Ulm University and the well known dislike of many students for this language, Esenthel

was not chosen for the final development.

Unity fulfills the prediction of being the best option after the cost-utility analysis: it

requires the least amount of time to become acquainted with the engine, a big part plays

the high abstraction from technical layers. With the main develop language being C#,

which is close to Java and lots of additional functionality, Unity was chosen as engine for

the next parts.

4.3. Data Structures

4.3.1. Heightmap

Heightmaps are used to describe a landscape in the form of a two dimensional raster

image. They are used to describe a so called 2.5D terrain. The term is based on the

fact that the geometric structure is essentially two dimensional with an added height

component. This means for every cell with coordinates X/Y in a grid, there is exactly one

Z-value (sometimes the coordinate axes are switched, with for every cell in a X/Z grid

there is exactly one Y-value). This has the advantage of being a simple and efficient

approach, but has the limitation of not being able to create any type of terrain. Overhangs

37

4. Technical Background

are not possible as they require multiple Z-coordinates. A similar technique is used

by early 3D games such as Doom to cope with the limited resources available [123].

Although being three dimensionally rendered, every level is based on a two dimensional

floor plan, which makes rooms stacked on top of each other or angular floors and ceilings

not possible without tricks to emulate them, as used by the Build enigne developed by

Ken Silverman [124]. A detailed explanation of the inner workings of the Doom engine

(renamed to id tech 1 in 2007) was written by Fabien Sanglard [125].

In the following sections, the term heightmap is used when the finished product of the

generation process is referred to.

4.3.2. Noisemap

In the following sections, the term noisemap is used to describe a a two dimension

raster image, which is used during generation to store the noise generated by the Perlin

noise [30] algorithm. In contrast to the heightmap, it describes the raw, unprocessed

noise, while the heightmap is the finished structure.

38

5
Application

This chapter describes the concepts used in the library and proof of concept game.

5.1. General

In this thesis, three kinds of levels can be generated: Landscape, cave and dungeon.

On every level, missions are generated, which take a role in shaping the level to ensure

that all points of interest are reachable.

The landscape serves as a hub-level and consists of a basic height map and connects

various other points of interest. The landscape will be generated once and then stored

to not confuse the player when he searches for a certain location. A key aspect is

the transition to a cave and dungeon, which are placed randomly and lead to newly

generated levels every time, but can only be accessed once per play session.

39

5. Application

A cave is a type of sub level and is generate from Perlin noise, which was used because

it is suitable to achieve the natural look required.

Dungeons on the other hand should look like they have been built by humans, so the

more natural and organic look resulting from using fractals is out of the question. A

approach based on a graph structure is used instead.

5.1.1. Missions

The missions are the tasks a player has to do in order to complete the game and are the

basis for generating terrain sketches, which will be explained in detail in section 6.2.4.

Missions are organized in an acyclic graph structure and consists of objectives, which

are represented as the nodes. Some objectives have to be completed in a specific order,

as they can have prerequisites, for example a has to be collected before chest can be

opened. Others can be completed in any order, which is also represented by edges in

the graph.

Every graph consists of a start and end node, which are introduced to make it possible to

have multiple missions in one graph, although it is currently not used. The objectives vary

depending on the scene they are generated for. The process of generating a mission is

loosely based on Lindenmayer systems [87], although a lot simpler. A simple grammar

is defined and the number of productions is based on the selected difficulty.

The nodes are placed on a Texture2D of the same size as the noise texture, the

nodes are placed in segments, which are calculated through the size of the texture

and the number of objective types in the graph, with start and end nodes also being a

type. This results in a random distribution, but makes sure to use most of the available

space, although they can be clustered. This can be solved by using a more advanced

distribution, as projected in chapter 8.

There are different sets of possible nodes, depending on the level they are generated

for. Landscape missions are meant to lead the player into caves or dungeons, which

then have their own missions. They are only generated once upon the start of a game,

whereas the missions in caves and dungeons are generated every time the player enters

it. A player can chose to abandon the mission by returning to the starting point or use the

40

5.1. General

normal exit, but only after all objectives are completed. The mission on the landscape

will be marked as fulfilled.

5.1.2. Landscape

Generating landscapes has been a very well researched topic and for this task, plasma

fractals generated via Perlin noise are used. The approach used here is based heavily

on one explained by a user called "scrawk" in his blog [126]. It uses the concept of

2.5D terrain, which means that for every point in a field of X and Z-coordinates, there is

exactly one Y-value defining the height of the point. While this does not allow for certain

landscape features like overhangs, it is a simple and effective method.

One heightmap is generated from two components: the plain- and mountain noise. Both

have the same dimensions, the main difference is in the amplitude. Plain noise only has

a very narrow amplitude, resulting in gentle terrain features. To generate distinct terrain

features, the mountain noise uses an amplitude several times that of the plain noise,

resulting in high spikes of values. As they are both converted into a Texture2D object,

the negative values are all cut off at zero, resulting in completely even terrain at those

spots. Both noises are added together, resulting in high amplitude spikes for mountains

where the plain noise does not have a significant impact, while on the completely even

places it generates a gently surface, resulting in a more realistic look.

The landscape makes use of the Terrain data structure provided by Unity, which has

built-in features for tiles of geometry, splatmaps for texturing and more. Unfortunately,

it seems that it is intended to be mainly used through the UI, as the documentation is

rather lackluster.

Terrain can be split in tiles, defined by the neighbors property, which automatically

smooths adjacent edges. This features was used in the early stages of development,

but was deactivated with the introduction of terrain sketches. While not impossible,

implementation of terrain sketches spread over multiple tiles was postponed due to time

constraints.

As the terrain is generated at runtime, texturing is a problem. To solve this, texture

splatting [127] can be used to dynamically apply texture onto the geometry, depending

41

5. Application

on parameters. Texture splatting uses splatmaps, which are essentially alphamaps the

size of the heightmap, defining the weight of a texture in the combined overall texture. In

Unity, the two obvious parameters are height and steepness of a point. Depending on

these two parameters, the mixture of textures can be calculated. In this case, textures

for lower regions are grass texture, higher textures become more dirt and rock heavy,

while at the top a snow texture is used. The steepness parameter is currently not used.

The terrain class has a number of other features, including placement of trees and other

small objects, which are currently not used.

A major problem when generating landscapes for games is the random nature of the

process, which makes it possible to have points of interest in unreachable spots. To

solve this problem, the concept of terrain sketches was adapted to the purpose.

In the approach by Zhou et al. [34], the concept was used to generated notable features

of the landscape, in this case mountain ridges. First, an existing heightmap was analyzed

on the characteristic features, which were extracted as small tiles. Those tiles were then

applied to a simple graphic, containing a sketch drawn by a human, while the rest of the

heightmap was filled with other features found in the existing heightmap and smoothed

out.

This process was adapted to use the generated plain- and mountains noise described

earlier. The sketch was generated based on the mission graph described in section

6.2.4, with the points of interest placed randomly in segments of the map based on the

number of missions and to make use of the complete map. They are then connected as

defined in the mission graph, which results in the sketch.

Instead of just adding the two noisemaps together, the concept is to weight the plains

noise higher the closer it is to the sketch, and vice versa for the mountains noise. The

result ensures that points of interest are reachable for the player, the look depends on

the other noise, especially the mountain noise. It is possible to cut through a mountain

region, which should be smooth.

42

5.1. General

(a) landscape sketch (b) terrain weights map

Figure 5.1.: sketches for terrain

(a) landscape plains noise (b) landscape mountain noise

Figure 5.2.: landscape terrain noise

43

5. Application

Figure 5.3.: complete terrain heightmap

5.1.3. Cave

Caves also use Perlin noise, but only one layer and the further processing is different:

the noise is evaluated and if the values exceed a set or calculated threshold, they are

set to the maximum value and vice versa. This results in a black and white noisemap

with natural looking structures, the details depend on the settings used when generating

the noise. A minor flaw is that all walls seem angled, as the noisemap specifies a 2.5D

terrain heightmap and as a result, multiple Z-values for every x/y-coordinate are not

possible.

The noisemap is then used to generate a mesh, where the color values are used to

determine the z-coordinates of a vertex. Dynamic texturing similar to splatmaps in

the landscape was not implemented due to time constraints and because graphical

fidelity was not a high priority. The mesh generator used was taken from the Procedural

Examples package [128] published in the Unity Asset Store.

Terrain sketches are used similar as in terrain generation, although no weighting is used

as it is only one texture. They are simply drawn onto the existing texture with a set width

to create accessible paths.

44

5.1. General

(a) raw noise for caves (b) noise after cave

Figure 5.4.: cave generation from noise

5.1.4. Dungeon

The dungeon generation uses a completely different concept than the previous two

methods. The commercial game TinyKeep [129] uses an approach based on nodes and

triangulation, as explained by the developer Phi Dinh [130]. Based on that, a similar but

simpler approach was developed.

The basic premise is still the same: rooms are generated and used as nodes in a graph,

which represents how the rooms are connected. Every room is a rectangle, described

through its lower left and upper right point. Additionally, the center point is calculated

and stored as it is used for graph calculation. With this approach, the usage of a terrain

sketch as used in the other level types is not necessary, as the graph structure already

ensures that all points of interest are reachable.

For the graph, numerous types are looked at: a minimum spanning tree is a well

understood graph, but it generates a lot of dead ends, which is not desired in this

case. The favorites were a Gabriel graph [131] and relative neighborhood graph [132].

They both generate structures that resemble human-made structures. The relative

neighborhood graph was ultimately chosen as it is a lot less complex to implement,

45

5. Application

(a) cave sketch (b) cave with sketch

Figure 5.5.: cave with sketch

although the naive implementation is of O(n3) complexity. But since the current maximum

number of rooms is only set to 10, it is not of concern, but should be noted in the future

if larger structures are to be generated. An algorithm with O(n2) complexity using a

Voronoi diagram and Delaunay triangulation is described in the paper.

The relative neighborhood graph was developed to extract a perceptually meaningful

structure from a set of points, similar to how a human would group points. In this type of

graph, two nodes are connected if there are no other nodes that are closer to either of

the two than they are to each other.

At the end of the generation process, the rooms are drawn onto a texture to use the

same mesh generator used in cave generation to create the actual geometry. It suffers

from the same downside of using a 2.5D terrain and seemingly angular walls.

46

5.2. Adaptivity

Figure 5.6.: Examples for generated dungeons

5.2. Adaptivity

Difficulty settings are implemented and affect the number of missions and objectives

generated. They have to be set manually, as they are currently only implemented with

future developments in mind. They can be changed during the game, but only affect it

before a level is generated. Missions in the landscape are only generated at the start of

the game and are not affected by changes during the game.

5.3. Game Concept

The game follows a rather simple concept, as the focus of this thesis is the procedural

generation in general, the game is only used as a proof of concept. Initially, a larger

concept involving a small role-playing game was planned, but not implemented due to

time constraints.

The starting point of the game is the landscape, were markers are placed to transition to

caves and/or dungeons, which are randomly selected and placed. Inside a dungeon or

cave, a submission is generated and in its current state, points of interest are generated

according to the missions and placed on the map randomly on the map and are shown

by markers. To have a minimal amount of actual gameplay, players are required to run

into a marker to fulfill the objective.

47

6
Development of a PCG Module in Unity

This chapter gives a brief overview of the Unity Engine and details of the implementation

and architecture used in the library.

Note that all development was done with version 4.5 and 4.6 of Unity. A switch to version

5.0, which was released while developing, was neglected as the new features were not

considered to be useful for this thesis. Unity has separate 2D and 3D development

modes, which are not further used as only the 3D mode had the capabilities required.

6.1. Unity Engine

Unity comes with a fully graphical development environment. For developing code, the

MonoDevelop IDE is bundled with the Unity SDK, an optional extension to use Visual

Studio is available through a third party developer [133].

49

6. Development of a PCG Module in Unity

Every game consists of scenes (which can be seen as a equivalent of levels in general;

in this thesis, both terms are used synonymously), which contain all objects used. The

main building block of every scene is the GameObject, which is a container to hold so

called components, which provide functionality. Some examples are cameras, controllers

used by the player or any type of geometry.

Everything else used in scenes is called an asset, whether it be code, textures, sounds,

models or anything else. They are stored in a folder of the same name. It is recom-

mended to use a structure of sub-folders to organize all assets. Settings set in the

development UI are stored in a separate folder. These folders are the only ones that

have to be saved, as everything else is generated by Unity when loading a project.

Every piece of code is called a script and can be written in UnityScript (a JavaScript

dialect), C# or Boo (a language heavily inspired by Python). All code is compiled into

byte code to be run in the Common Language Runtime of the Mono platform [134], an

open source implementation of Microsofts dotNet platform. Development is not limited to

one language, all three can be mixed, with some limitations. Communication amongst

scripts can be done by calling publicly declared member functions or a simple messaging

system. The latter is only recommended with a limited amount of GameObjects, as

performance can be very slow. Alternatively, the dotNET event-system can be used, but

requires more administrative overhead, which is only worth it when there are a large

number of GameObjects in the given scene. For this thesis, scripts were only written in

C#, which was a personal choice of the author.

One particular feature of Unity is that member variables, which are declared public are

shown in the graphical UI and can be monitored and changed at runtime, which severely

reduces time to debug. This includes enum-values, which are displayed as drop-down

menus. An example is shown in figure 6.1.

Unity provides a huge number of classes and interfaces available to the developer,

which cover every basic aspect needed in game development, such as frequently used

mathematical functions as well as interfaces to all components used in Unity, which are

a great help with procedural content generation. Documentation is good, but clearly

lacking in some places, for example the description of Terrain and TerrainData

50

6.2. Procedural Content Generation Package

Figure 6.1.: Display of public declared variables in Unity UI

functions is merely more than "use the function name in a sentence". But with the

widespread use, other resources provide more information.

A major concept of developing games with Unity are prefabs. Every GameObject can

be used as a prefab by simply dragging and dropping it into the assets view, all settings

are saved into the prefab. They can be used in other scenes and instantiated at runtime,

which makes them especially useful for functionality that is used regularly.

6.2. Procedural Content Generation Package

This section describes the Unity package developed in this thesis which can be used by

future projects and contains everything needed to procedurally generate levels.

6.2.1. General

Unity provides functionality to export assets from a project into a package, combining the

selected item in a container, which can be imported into Unity, preserving the defined

structure. In general, Unity does not force a directory structure onto the developer,

although it is advised to use one to organize the files. For script files this means that

51

6. Development of a PCG Module in Unity

they are accessible (hence the access modifiers are set accordingly), no matter in which

(sub)directory they are located.

Most member variables in the created scripts are declared private and are accessible

through properties, which provide getter- and setter functionality. Functions are declared

private unless they are used from other classes, in that case they are also declared

static if they do not need information from an instantiated object.

6.2.2. Architecture

The package uses an object-oriented architecture. The general generation class

Generator provides basic functionality used for every level. Separate classes pro-

vide functionality specific for the set level, but use the Generator class through an

instantiated object. When useful, separate classes are created for additional functionality.

6.2.3. Integration in Unity Architecture

Newly created scripts through the Unity development UI have a standard structure: they

derive from the MonoBehaviour class and have callback function stubs for Start()

and Update() functions. Start() is called upon loading of the scene, while Update()

is called when a new frame is rendered. Additional useful callback functions are Awake()

(similar to Start() but called earlier in the loading process, useful for initialization) and

OnGUI() (renders the GUI elements).

Unity does not require any kind of architecture for the code, but it is recommended to

have a central GameObject handling all functionality. In this case, the GameManager

class handles functionality and initializes the basic functionality.

For every script that is attached to a GameObject, the public variables are shown in the

development UI. For basic data types such as numbers or strings, default values can be

set in the code, which are inherited in the UI. More specific data types such as textures

or other objects can be set through the UI, otherwise they are set to null.

52

6.2. Procedural Content Generation Package

6.2.4. Content Generation Algorithms

This section briefly describes implementation details on the algorithms and data struc-

tures used in this thesis. For a general description, see section 5.1.

The previously described markers are saved as prefabs and are instantiated at runtime.

To do so they have to be specified in the code, according member variables are available

in all classes and can be identified by the go_ prefix, which stands for GameObject, the

data type of the variable.

Missions

Missions are organized in a graph-structure, with each graph object having a number of

MissionNode objects organized in a list, which makes it easier to traverse all nodes.

Each nodes also has a list with references to the following nodes, which makes for a

directed graph, which is sufficient in this case. Each node also has a defined task, stored

as a String and coordinates defining the point as two Integer values representing

the point on the noise texture and a boolean variable storing if an objective is completed

or not.

The definition of the grammar and production is handled by two classes, LSystem

and LSystemProductionRule. Constants and variables are stored in dictionaries of

type <string, string>. Production is handled by the ApplyRule function, which

internally uses the string.Replace function of C#.

The constructor of the according class, which defines the constants, variables and rules

for the grammar is shown for reference in tables A.16 and A.17.

Landscape

The main class to generate a landscape is the TerrainGenerator class. It uses an

instantiated Perlin noise generator and has a huge number of member variables, which

are mostly used to control the generation.

Key functions are FillHeights(), which generates the heightmap, and AssignSplatMap(),

53

6. Development of a PCG Module in Unity

which generates the splatmaps for the current heightmap. Heightmaps are stored as

2D arrays of floats for every tile in a TerrainData object. Converting them between

float arrays and Texture2D objects should be kept to a minimum, as the loss of

precision can lead to rough landscapes with little stair-like terrain. The heightmaps are

also declared as static variables, preventing them from being deleted upon transitioning

to a different scene. When the player returns from a the sub level, the landscape is built

again with the previously generated heightmaps, because generating those is by far the

most complex and calculation intensive task.

Splatmaps currently support four different textures which is a hardcoded number, but

could be extended to support a dynamical number of textures . Weights for the texture

depends on the height of a specific point compared to the maximum height: the top 10%

and 35% respectively use a fixed texture without any mixture, lower levels use a mixture

of two textures while the lowest 20% use only one texture again. These values are also

hardcoded as determining them provided a big challenge, calculating them dynamically

proved to be out of the scope of this thesis.

A new mission is generated the first time the landscape is generated and is stored in the

GameManager to prevent it from being deleted upon transition to a different level.

The entrances to caves and dungeons are placed in the map through instantiation. The

last know position is also saved, so that the player is placed near the entrance after

leaving the sub level. The terrain sketch is applied using a key color to distinguish it from

noise. For every point on the heightmap, the euclidean distance to the nearest point of

the sketch is calculated, determining the weight for applying the sketch. The closer the

point is, the higher the weight is for the plains noise.

Cave

Caves are generated by the GeneratorCave class, which derives from MonoBehaviour.

It uses a Texture2D object to store the noise, which has less precision than using a

float array, but is easier to handle, especially as it can be drawn on without conversion.

The caveThreshold variable determines when a point in the noise is considered be-

longing to the floor or the ceiling, which can be set fixed or calculated from the average

54

6.2. Procedural Content Generation Package

Figure 6.2.: landscape ingame

value.

The terrain sketch is applied to the noise texture by drawing a square of set size onto

the noise where the sketch is, determined by the key color in the sketch texture. It uses

the mesh generator provided by the Generator class to generate geometry. Points

of interests of the generated mission are instantiated from prefabs and placed on the

geometry.

Dungeon

Dungeon generation is provided by the GeneratorDungeon class. It does not use

noise, but draws a number of rectangles onto a Texture2D object. But first the rooms

are calculated and stored in an more abstract class, making calculations easier as pixel-

operations on the Texture2D objects are expensive. Rooms are organized in a list

containing elements of the type Room. During the generation process it is ensured that

they stay inside the boundaries of the Texture2D object they are to be drawn on and do

not overlap. The center point of every room is used as a node in a relative neighborhood

graph, which is calculated and determines which rooms are to be connected. This graph

55

6. Development of a PCG Module in Unity

Figure 6.3.: cave ingame

ensures that the corridors are laid planar on the map and can then be simply drawn by

calculating a right triangle between the two points and using the line between them as

hypotenuse.

6.2.5. Game Mechanics

To provide functionality for the proof of concept game, additional classes handle player

interaction and controls. Most of the controls for the player character and the camera are

adapted from a tutorial by Christian Geiger and Patrick Pogscheba [135]. Additional code

handles collisions between the player character and markers, which count as fulfilling an

objective.

6.2.6. Additional Code

Additional functionality is provided in specific classes, such as Gaussian and median

texture filter which can be used to smooth textures. Other classes provide functionality

for the main menu and an options menu, the latter is mainly used for experiments with

56

6.2. Procedural Content Generation Package

Figure 6.4.: dungeon ingame

the GUI system of Unity introduced in version 4.6.

The GUI seen on the figures 6.2, 6.3 and 6.4 is done in code, but can also be created in

the UI, which has the advantage that the interface is visible in the UI and can be easily

adjusted, while the interface in code is only visible when the game runs. An example

used here is a reset button that puts the player in a safe place high above the level

geometry in case it gets stuck (since there is no falling damage calculated it is perfectly

safe).

57

7
Conclusion

To conclude this thesis a short summary on the results of the particular reviews will be

stated and a final conclusion will be made.

First, a suitable game engine was selected, with a detailed view on libgdx, Esenthel

and Unity. Unity was selected, its biggest advantages being the wide variety of different

platforms supported without major changes needed, the possibility to use different

languages to write code and the wide acceptance by professional and hobby developers

alike, which directly leads to a huge amount of teaching resources available.

A small game was developed to test a library for procedurally generating content, with

various techniques being looked at. A terrain generator based on Perlin noise has been

used to generate a landscape, which is used as hub level. Two types of sub levels

were developed, with caves also based on Perlin noise, while dungeons use a relative

neighborhood graph to create a structure that looks like it has been made by humans,

while noise functions are more suitable for natural-like environments. To ensure that the

59

7. Conclusion

points of interest in the level are reachable, the approach of terrain sketching has been

adapted to this use case. The basis for the sketches are generated missions, which are

generated by a formal grammar and translated into a graph structure.

The resulting library is suitable for role-playing and action-adventure games without

significant changes.

60

8
Limitations and Future Work

This chapter describes the limitations of the current work and possible improvements

and extensions for future projects.

8.1. Levels

The generated levels were designed with a role-playing aspect in mind and should work

without modification in that genre. Due to the perspective used, action-adventure games

would also be possible, no matter if played from a first- or third-person perspective.

Games played from an isometric or birds eye view are also possible, but might require

some modifications as space outside of the players perspective was ignored due to not

being visible in the proof of concept game. This includes all geometry that is behind

walls generated by the mesh generator used in section 5.1.3 and 5.1.4.

61

8. Limitations and Future Work

For strategy games the developed levels should also be usable, for multiplayer games

they might require modification to ensure an even playing field for all players.

The levels generated are not useful for platforming games, as they require a vastly

different level construction due to the changed perspective and lack of vertical elements.

The basic concept of using noise and graphs might be useful, but the process to get

finished levels has to be very different.

As the generated structures lack objects to separate parts of the levels from each other,

the whole level is accessible from he start. The mission structures are quite simple, but

the data structures used for missions are prepared to be used with complex, branching

and prerequisite tasks to form a progression model. An example can be seen in the

work of Joris Dormans [85] [86]. But the level has to be separated into logical segments

accordingly. Multiple missions in a level are also imaginable, with the graph structures

already prepared to support them. The objectives are currently randomly placed in a

segment defined by the number of objective types, which is a very basic distribution and

can lead to clumped up objectives. A different distribution would help with this and also

ensure the space is used to properly utilized.

The current level generation does not use all terrain features available from Unity. It

supports splitting the landscape into multiple tiles, which is currently not used due to

the terrain sketch not supporting it. This could be used to create a much bigger world,

which could be expanded at runtime and could take changing difficulty settings into

consideration.

8.2. Presentation

Generally, the graphical fidelity of the levels is not great, they are mostly empty geometry

with basic texturing or shading, aside from random elements in caves produced by the

noise. Unity has built-in features to place trees and details objects such as bushes

on terrains, but they are currently not used. Also, the calculation of the splatmaps is

currently very basic and static. A more sophisticated technique would increase the

graphical fidelity.

Caves and dungeons are currently only rudimentary textured if at all. Since the geometry

62

8.3. Adaptivity

is not known beforehand, texture alignment of pre-defined textures is tricky. Also, the

distribution of the polygons is not even, as the walls only consist of one stripe of triangles.

Texture synthesis could be used to solve this. Furthermore, there could be scenery

objects placed to increase the realism, for example rocks in caves and all kinds of man

made objects in dungeons like tables, chairs and wall paintings. Furthermore, player

models and points of interest are currently marked by simple placeholder objects, more

suitable ones would increase immersion.

8.3. Adaptivity

Currently, the game has three difficulty settings which only affect the structure of the mis-

sions generated in caves and dungeons. Missions on the landscape are only generated

once which is intended as changing them without a reason would most certainly lead

to confusion. They could be extended, depending on the performance of the player or

expand the landscape if needed.

Caves and dungeons are generated every time the player enters them and could be

adapted to reflect changes in the difficulty settings. Caves are based on Perlin noise

and different settings to create more or less complex structures are possible, but have

not been tested to an extend to be used in the current state. Dungeons are based on a

different structure, therefore other adjustments are available: the simplest one would be

to change the number of rooms, which is currently already done as every objective is

placed in exactly one room. But it is debatable if more rooms increase the challenge

or lead to frustration. A different type of graph could also be used, the currently used

random neighborhood graph was not chosen with this criteria in mind.

The difficulty is currently fixed and can only be changed in the development UI of Unity.

The difficulty levels are defined internally as an enum, making it possible to be changed

during the game without the UI. It is planned that they should be changeable by external

factors, such as the performance or the physical condition of the player as determined

by sensors. As an example, the current stress level of the player could be determined

and the difficulty could be decreased to lower the stress put on the player. Another way

could be to change the difficulty during a trial by the conductor, based on data he sees

63

8. Limitations and Future Work

on a console which shows the performance and physical condition of the player. This

requires extensive expansion of the current structure.

To increase the capability of the adaptiveness, a detailed model of the players could be

used to determine and save the players skill and physical condition. Some examples are

given in section 2.3

8.4. Interfaces

To support adaptivity described in the previous section, gathering data from sensors

measuring bodily functions such as heart rate, blood pressure could be useful to deter-

mine the users physical condition. Additionally, it would be useful to adjust parameters

of the game from a separate program, which could be operated by the conductor of a

study to measure impacts of changing conditions for the players.

64

A
Appendix

A.1. Cost-Utility Analysis

Table A.1.: considered game engines in cost-utility analysis

Name Supported

Platforms

Language En-

gine

Language

other

Licence

Blender Game

Engine

Windows,

Linux, MacOS

X

C/C++, Python C/C++, Python GPL

Cafu Engine Windows,

Linux

C/C++ C/C++ GPL

65

A. Appendix

Crystal Space Windows,

Linux, MacOS

X

C/C++ C/C++ LGPL

Esenthel

Engine

Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++,

Java, Obj-

C, JavaScript

C/C++, Obj-C,

JavaScript

Proprietary,

free available

Irrlicht Windows,

Linux, MacOS

X

C/C++, C#,

VB.net

C/C++, C#,

VB.net

ZLIB

jMonkey Windows,

Linux, MacOS

X, Browser,

Android

Java Java, Ruby,

Python,

Javascript,

PHP

BSD

libgdx Windows,

Linux, MacOS

X, Browser,

Android, iOS

Java, C/C++ Java Apache 2

Neoaxis 3D

Engine

Windows, Ma-

cOS X

C/C++, C# C/C++, C# Proprietary,

free available

OGRE Windows,

Linux, MacOS

X

C/C++ C/C++ MIT

Panda3D Windows,

Linux, MacOS

X

C/C++, Python C/C++, Python BSD

ShiVa Engine Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++ C/C++ Proprietary,

free available

66

A.1. Cost-Utility Analysis

Unity Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++ C#, JavaScript,

Python

Proprietary,

free available

C4 Engine Windows,

Linux, MacOS

X

C/C++ C/C++ Proprietary,

cost

DX Studio Windows C/C++, VB C/C++, VB Proprietary,

free available
Leadwerks En-

gine

Windows C/C++, C#,

Java, Perl,

Python

C/C++, C#,

Java, Perl,

Python

Proprietary,

cost

Visual3D

Game Engine

Windows,

Browser

C# C/C++. C#,

Ruby, Python,

F#, Lua

Proprietary,

cost

Unreal Devel-

opment Kit

Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++ C/C++ Proprietary,

cost

Table A.2.: Criteria for cost-utility analysis

Criteria Weight

licence 10

open source 8

closed source 2

technical aspects 30

programming language engine 4

programming language gamecode 7

supported platforms 6

67

A. Appendix

functionality 5

architecture 8

activity of developers 20

frequency of updates 7

time since last update 7

presence in forums/wikis/chats 6

tool support 16

integration in IDEs 7

support for modelling/animation tools 5

provided tools 4

community 17

number of projects 5

activity of projects 6

activity in forums/wikis/chats 6

ease of learing 33

learning curve 9

available literature/tutorials 9

documentation 8

support by developers 7

Total: 135

A.2. Engine Cost-Utility Analysis

68

A.2. Engine Cost-Utility Analysis

Blender Game Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 15 96
Programming Language Engine 4 2 8
Programming Language Gamecode 7 4 28
Supported Platforms 6 3 18
Functionality 5 2 10
Architecture 8 4 32
Activity Developer 20 7 46
Frequency of updates 7 2 14
Time since last update 7 2 14
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 11 58
Integration in IDEs 7 3 21
Support for Modeling/Animation Tools 5 5 25
provided tools 4 3 12
Community 17 5 29
Number of Projects 5 1 5
Activity of Projects 6 2 12
Activity in Forums/Wiki/Chats/etc. 6 2 12
ease of learning 33 11 92
learning curve 9 3 27
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 2 14
Total 126 54 361

Table A.3.: cost-utility analysis of Blender Game Engine

69

A. Appendix

Cafu Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 15 96
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 2 12
Functionality 5 4 20
Architecture 8 3 24
Activity Developer 20 7 46
Frequency of updates 7 3 21
Time since last update 7 1 7
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 9 46
Integration in IDEs 7 2 14
Support for Modeling/Animation Tools 5 4 20
provided tools 4 3 12
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 12 97
learning curve 9 3 27
available literature/tutorial 9 2 18
documentation 8 3 24
support by developers 7 4 28
Total 126 57 371

Table A.4.: cost-utility analysis of Cafu Engine

70

A.2. Engine Cost-Utility Analysis

Crystal Space
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 18 110
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 3 18
Functionality 5 4 20
Architecture 8 4 32
Activity Developer 20 7 46
Frequency of updates 7 3 21
Time since last update 7 1 7
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 5 27
Integration in IDEs 7 1 7
Support for Modeling/Animation Tools 5 4 20
provided tools 4 0 0
Community 17 9 51
Number of Projects 5 3 15
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 10 81
learning curve 9 1 9
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 3 21
Total 126 54 355

Table A.5.: cost-utility analysis of Crystal Space

71

A. Appendix

Esenthel Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 20 120
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 5 30
Functionality 5 5 25
Architecture 8 4 32
Activity Developer 20 14 94
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 13 69
Integration in IDEs 7 4 28
Support for Modeling/Animation Tools 5 5 25
provided tools 4 4 16
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 12 98
learning curve 9 2 18
available literature/tutorial 9 3 27
documentation 8 4 32
support by developers 7 3 21
Total 126 72 437

Table A.6.: cost-utility analysis of Esenthel Engine

72

A.2. Engine Cost-Utility Analysis

Irrlicht Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 15 90
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 3 18
Functionality 5 3 15
Architecture 8 3 24
Activity Developer 20 7 46
Frequency of updates 7 2 14
Time since last update 7 2 14
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 10 56
Integration in IDEs 7 4 28
Support for Modeling/Animation Tools 5 4 20
provided tools 4 2 8
Community 17 9 51
Number of Projects 5 3 15
Activity of Projects 6 2 12
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 13 107
learning curve 9 2 18
available literature/tutorial 9 4 36
documentation 8 4 32
support by developers 7 3 21
Total 126 59 390

Table A.7.: cost-utility analysis of Irrlicht Engine

73

A. Appendix

jMonkey Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 19 115
Programming Language Engine 4 4 16
Programming Language Gamecode 7 4 28
Supported Platforms 6 4 24
Functionality 5 3 15
Architecture 8 4 32
Activity Developer 20 9 60
Frequency of updates 7 3 21
Time since last update 7 3 21
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 7 39
Integration in IDEs 7 3 21
Support for Modeling/Animation Tools 5 2 10
provided tools 4 2 8
Community 17 9 52
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 14 116
learning curve 9 3 27
available literature/tutorial 9 4 36
documentation 8 4 32
support by developers 7 3 21
Total 126 63 422

Table A.8.: cost-utility analysis of jMonkey Engine

74

A.2. Engine Cost-Utility Analysis

libgdx
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 19 113
Programming Language Engine 4 4 16
Programming Language Gamecode 7 4 28
Supported Platforms 6 5 30
Functionality 5 3 15
Architecture 8 3 24
Activity Developer 20 14 94
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 6 37
Integration in IDEs 7 4 28
Support for Modeling/Animation Tools 5 1 5
provided tools 4 1 4
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 12 99
learning curve 9 3 27
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 3 21
Total 126 64 429

Table A.9.: cost-utility analysis of libgdx

75

A. Appendix

NeoAxis Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 17 101
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 2 12
Functionality 5 5 25
Architecture 8 3 24
Activity Developer 20 12 80
Frequency of updates 7 4 28
Time since last update 7 4 28
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 12 61
Integration in IDEs 7 3 21
Support for Modeling/Animation Tools 5 4 20
provided tools 4 5 20
Community 17 9 52
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 11 89
learning curve 9 3 27
available literature/tutorial 9 2 18
documentation 8 2 16
support by developers 7 4 28
Total 126 66 393

Table A.10.: cost-utility analysis of NeoAxis Engine

76

A.2. Engine Cost-Utility Analysis

OGRE Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 14 85
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 3 18
Functionality 5 2 10
Architecture 8 3 24
Activity Developer 20 11 73
Frequency of updates 7 4 28
Time since last update 7 3 21
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 4 24
Integration in IDEs 7 2 24
Support for Modeling/Animation Tools 5 2 10
provided tools 4 0 0
Community 17 14 28
Number of Projects 5 4 20
Activity of Projects 6 5 30
Activity in Forums/Wiki/Chats/etc. 6 5 30
ease of learning 33 15 123
learning curve 9 2 18
available literature/tutorial 9 5 45
documentation 8 4 32
support by developers 7 4 28
Total 126 63 425

Table A.11.: cost-utility analysis of OGRE Engine

77

A. Appendix

Panda3D Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 14 85
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 3 18
Functionality 5 3 15
Architecture 8 3 24
Activity Developer 20 6 39
Frequency of updates 7 1 7
Time since last update 7 2 14
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 6 31
Integration in IDEs 7 1 7
Support for Modeling/Animation Tools 5 3 20
provided tools 4 1 4
Community 17 9 52
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 13 107
learning curve 9 3 27
available literature/tutorial 9 3 27
documentation 8 4 32
support by developers 7 3 21
Total 126 55 366

Table A.12.: cost-utility analysis of Panda3D Engine

78

A.2. Engine Cost-Utility Analysis

Shiva3D Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 19 112
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 5 30
Functionality 5 5 30
Architecture 8 3 24
Activity Developer 20 6 39
Frequency of updates 7 2 14
Time since last update 7 1 7
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 9 43
Integration in IDEs 7 1 7
Support for Modeling/Animation Tools 5 4 20
provided tools 4 4 16
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 11 90
learning curve 9 2 27
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 3 21
Total 126 58 340

Table A.13.: cost-utility analysis of Shiva3D Engine

79

A. Appendix

Unity Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 21 127
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 30
Supported Platforms 6 5 30
Functionality 5 5 30
Architecture 8 4 32
Activity Developer 20 13 88
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 9 41
Integration in IDEs 7 0 0
Support for Modeling/Animation Tools 5 5 25
provided tools 4 4 16
Community 17 15 85
Number of Projects 5 5 25
Activity of Projects 6 5 30
Activity in Forums/Wiki/Chats/etc. 6 5 30
ease of learning 33 17 142
learning curve 9 4 36
available literature/tutorial 9 5 45
documentation 8 5 40
support by developers 7 3 21
Total 126 80 493

Table A.14.: cost-utility analysis of Unity Engine Engine

80

A.2. Engine Cost-Utility Analysis

Unreal Development Kit
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 20 121
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 5 30
Functionality 5 5 30
Architecture 8 3 24
Activity Developer 20 14 94
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 12 59
Integration in IDEs 7 2 14
Support for Modeling/Animation Tools 5 4 24
provided tools 4 5 20
Community 17 14 80
Number of Projects 5 4 20
Activity of Projects 6 5 30
Activity in Forums/Wiki/Chats/etc. 6 5 30
ease of learning 33 15 124
learning curve 9 2 18
available literature/tutorial 9 5 45
documentation 8 5 40
support by developers 7 3 21
Total 126 80 486

Table A.15.: cost-utility analysis of Unreal Development Kit

81

A. Appendix

A.3. Production Rules for Mission Generation

Table A.16.: Constants and variables defined in the grammar for mission generation

Constant (non-terminal symbol) Symbol

Start S

End E

Key K

Chest C

Find F

Enemy E

Overworld1 Dungeon Od

Overworld1 Cave Oc

Variable (terminal symbol) Symbol

Location L

Objective O

Replacer R

Table A.17.: Grammar and corresponding code

Rule name formal rule code (parameters for new

LSystemProductionRule())

remove replacer R → m_variables["Replacer"],

string.Empty

remove location L → m_variables["Location"],

string.Empty)

FindKeysAndChest O → RC m_variables["Objective"],

m_variables["Replacer"] + " " +

m_constants["Chest"]

keychest1 R → RK m_variables["Replacer"],

m_variables["Replacer"] + " " +

m_constants["Key"]1old name for landscape

82

A.3. Production Rules for Mission Generation

keychest2 R → K m_variables["Replacer"],

m_constants["Key"]

FindStuff O → R m_variables["Objective"],

m_variables["Replacer"]

find1 R → RF m_variables["Replacer"],

m_variables["Replacer"] + " " +

m_constants["Find"]

find2 R → F m_variables["Replacer"],

m_constants["Find"]

Enemy O → E m_variables["Objective"],

m_variables["Replacer"]

kill1 R → RE m_variables["Replacer"],

m_variables["Replacer"] + " " +

m_constants["Enemy"]

kill2 R → E m_variables["Replacer"],

m_constants["Enemy"]

EnterLocation L → LR m_variables["Location"],

m_variables["Location"] + " " +

m_variables["Replacer"]

enterDungeon R → Od m_variables["Replacer"],

m_constants["Overworld Dungeon"]

enterCave R → Oc m_variables["Replacer"],

m_constants["Overworld Cave"]

83

List of Figures

3.1. Example of noise created with Perlin noise 20

3.2. Example of a simple formal grammar . 20

5.1. sketches for terrain . 43

5.2. landscape terrain noise . 43

5.3. complete terrain heightmap . 44

5.4. cave generation from noise . 45

5.5. cave with sketch . 46

5.6. Examples for generated dungeons . 47

6.1. Display of public declared variables in Unity UI 51

6.2. landscape ingame . 55

6.3. cave ingame . 56

6.4. dungeon ingame . 57

85

List of Tables

A.1. considered game engines in cost-utility analysis 65

A.2. Criteria for cost-utility analysis . 67

A.3. cost-utility analysis of Blender Game Engine 69

A.4. cost-utility analysis of Cafu Engine . 70

A.5. cost-utility analysis of Crystal Space . 71

A.6. cost-utility analysis of Esenthel Engine . 72

A.7. cost-utility analysis of Irrlicht Engine . 73

A.8. cost-utility analysis of jMonkey Engine . 74

A.9. cost-utility analysis of libgdx . 75

A.10.cost-utility analysis of NeoAxis Engine . 76

A.11.cost-utility analysis of OGRE Engine . 77

A.12.cost-utility analysis of Panda3D Engine 78

A.13.cost-utility analysis of Shiva3D Engine . 79

A.14.cost-utility analysis of Unity Engine Engine 80

A.15.cost-utility analysis of Unreal Development Kit 81

A.16.Constants and variables defined in the grammar for mission generation . 82

A.17.Grammar and corresponding code . 82

87

Listings

89

Bibliography

[1] Mechanical Horse Riding Simulator during WWI. http://commons.

wikimedia.org/wiki/File:Horse_simulator_WWI.jpg,

[2] ABT, C.C.: Serious Games. University Press of America, 1987 http://books.

google.de/books?id=axUs9HA-hF8C. – ISBN 9780819161482

[3] PARKER, Andrew: "OAPs say nurse, I need a Wii. http://www.thesun.co.

uk/sol/homepage/news/article294579.ece Last accessed: 2015/04/23,

September 2007

[4] SPUFFORD, Francis: Masters of their universe. http://www.theguardian.

com/books/2003/oct/18/features.weekend Last Accessed 2015/04/22,

October 2003

[5] BRABHAM, David ; BELL, Ian ; ACORN SOFT (PUBLISHER): Elite. September 1984

[6] TOY, Michael ; WICHMAN, Glenn ; ARNOLD, Ken ; LANE, Jon: Rogue. 1980

[7] WICHMAN, Glenn R.: A Brief History of "Rogue". http://www.wichman.org/

roguehistory.html, 1997

[8] SOFTWORKS, Bethesda: The Elder Scrolls II: Daggerfall. August 1996. – Official

Website: http://www.elderscrolls.com/daggerfall/ Last Accessed:

2015/04/22

[9] The Elder Scrolls II: Daggerfall - The Elder Scrolls Wiki. http:

//elderscrolls.wikia.com/wiki/The_Elder_Scrolls_II:

_Daggerfall,

91

http://commons.wikimedia.org/wiki/File:Horse_simulator_WWI.jpg
http://commons.wikimedia.org/wiki/File:Horse_simulator_WWI.jpg
http://books.google.de/books?id=axUs9HA-hF8C
http://books.google.de/books?id=axUs9HA-hF8C
http://www.thesun.co.uk/sol/homepage/news/article294579.ece
http://www.thesun.co.uk/sol/homepage/news/article294579.ece
http://www.theguardian.com/books/2003/oct/18/features.weekend
http://www.theguardian.com/books/2003/oct/18/features.weekend
http://www.wichman.org/roguehistory.html
http://www.wichman.org/roguehistory.html
http://www.elderscrolls.com/daggerfall/
http://elderscrolls.wikia.com/wiki/The_Elder_Scrolls_II:_Daggerfall
http://elderscrolls.wikia.com/wiki/The_Elder_Scrolls_II:_Daggerfall
http://elderscrolls.wikia.com/wiki/The_Elder_Scrolls_II:_Daggerfall

Bibliography

[10] BLIZZARD ENTERTAINMENT (DEVELOPER/PUBLISHER US) ; UBISOFT (PUBLISHER

EU): Diablo. December 1996. – Official Website: www.diablo.com Last

accessed 2014/04/22

[11] BETHESDA GAME STUDIOS ; 2K GAMES (PUBLISHER): The Elder Scrolls IV:

Oblivion. March 2006. – Official Website: http://www.elderscrolls.com/

oblivion/ Last accessed: 2015/04/22

[12] Oblivion:Leveling - UESPWiki. http://www.uesp.net/wiki/Oblivion:

Leveling,

[13] MOJANG: Minecraft. November 2011. – Official Website: https://minecraft.

net/ Last accessed 2015/04/22

[14] PERSSON, Marcus "notch": Terrain generation, Part 1. http://notch.

tumblr.com/post/3746989361/terrain-generation-part-1 Last ac-

cessed 2015/04/22, March 2009

[15] FRONTIER DEVELOPMENTS: Elite: Dangerous. December 2014. – Official

Website: http://www.elitedangerous.com/ Last accessed: 2015/04/22

[16] HELLO GAMES: No Man’s Sky. 2015. – Official Website: http://no-mans-sky.

com/ Last accesssed: 2015/04/22

[17] HIGGINS, Chris: No Man’s Sky would take 5 billion years to ex-

plore. http://www.wired.co.uk/news/archive/2014-08/18/

no-mans-sky-planets, August 2014

[18] prodlist :: pouët.net. http://www.pouet.net/prodlist.php?type[]=4k&

platform[]=Windows&page=1 Last accessed: 2015/04/23, . – Demos of 4k

category on Windows platform

[19] .THEPRODUKKT: .kkrieger :: farbrausch.com :: your online worshipping re-

source. http://www.farbrausch.de/prod.py?which=114 Last accessed:

2015/04/23, April 2004

92

www.diablo.com
http://www.elderscrolls.com/oblivion/
http://www.elderscrolls.com/oblivion/
http://www.uesp.net/wiki/Oblivion:Leveling
http://www.uesp.net/wiki/Oblivion:Leveling
https://minecraft.net/
https://minecraft.net/
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://www.elitedangerous.com/
http://no-mans-sky.com/
http://no-mans-sky.com/
http://www.wired.co.uk/news/archive/2014-08/18/no-mans-sky-planets
http://www.wired.co.uk/news/archive/2014-08/18/no-mans-sky-planets
http://www.pouet.net/prodlist.php?type[]=4k&platform[]=Windows&page=1
http://www.pouet.net/prodlist.php?type[]=4k&platform[]=Windows&page=1
http://www.farbrausch.de/prod.py?which=114

Bibliography

[20] GIESEN, Fabian: .kkrieger postmortem. http://web.archive.org/web/

20050216145754/http://game-face.de/article.php3?id_article=

132 Archived version of 2015/02/16, last accessed 2015/04/25, Oktober 2004

[21] EVOLUTIONARY GAMES: Galactic Arms Race. 2010. – Official Website: http:

//galacticarmsrace.blogspot.de/ Last accessed: 2015/04/22

[22] HASTINGS, Erin J. ; GUHA, Ratan K. ; STANLEY, Kenneth O.: Evolving content in

the galactic arms race video game. In: Computational Intelligence and Games,

2009. CIG 2009. IEEE Symposium on IEEE, 2009, S. 241–248

[23] DORMANS, Joris: Generating emergent physics for action-adventure games.

In: Proceedings of the The third workshop on Procedural Content Generation in

Games ACM, 2012, S. 9

[24] FERNÁNDEZ-VARA, Clara ; THOMSON, Alec: Procedural generation of narrative

puzzles in adventure games: The puzzle-dice system. In: Proceedings of the The

third workshop on Procedural Content Generation in Games ACM, 2012, S. 12

[25] Code wheel - Wikipedia, the free encyclopedia. http://en.wikipedia.org/

wiki/Code_wheel Last accessed: 2015/04/22,

[26] LUCASFILM GAMES ; LUCASARTS (PUBLISHER): The Secret of Monkey Island.

October 1990. – Entry in MobyGames database: http://www.mobygames.

com/game/secret-of-monkey-island Last accessed: 2015/04/22

[27] DECK13 ; BVH SOFTWARE (PUBLISHER): Ankh - Herz des Osiris. October 2006.

– Official Website: http://ankh-game.com/

[28] MANDELBROT, Benoit B.: The fractal geometry of nature. Bd. 173. Macmillian,

1983

[29] FOURNIER, Alain ; FUSSELL, Don ; CARPENTER, Loren: Computer rendering of

stochastic models. In: Communications of the ACM 25 (1982), Nr. 6, S. 371–384

[30] PERLIN, Ken: An image synthesizer. In: ACM Siggraph Computer Graphics 19

(1985), Nr. 3, S. 287–296

93

http://web.archive.org/web/20050216145754/http://game-face.de/article.php3?id_article=132
http://web.archive.org/web/20050216145754/http://game-face.de/article.php3?id_article=132
http://web.archive.org/web/20050216145754/http://game-face.de/article.php3?id_article=132
http://galacticarmsrace.blogspot.de/
http://galacticarmsrace.blogspot.de/
http://en.wikipedia.org/wiki/Code_wheel
http://en.wikipedia.org/wiki/Code_wheel
http://www.mobygames.com/game/secret-of-monkey-island
http://www.mobygames.com/game/secret-of-monkey-island
http://ankh-game.com/

Bibliography

[31] PERLIN, Ken: Improving noise. In: ACM Transactions on Graphics (TOG) Bd. 21

ACM, 2002, S. 681–682

[32] KELLEY, Alex D. ; MALIN, Michael C. ; NIELSON, Gregory M.: Terrain simulation

using a model of stream erosion. ACM, 1988

[33] MUSGRAVE, F K. ; KOLB, Craig E. ; MACE, Robert S.: The synthesis and rendering

of eroded fractal terrains. In: ACM SIGGRAPH Computer Graphics Bd. 23 ACM,

1989, S. 41–50

[34] ZHOU, Howard ; SUN, Jie ; TURK, Greg ; REHG, James M.: Terrain synthesis

from digital elevation models. In: Visualization and Computer Graphics, IEEE

Transactions on 13 (2007), Nr. 4, S. 834–848

[35] ZYDA, Michael: From visual simulation to virtual reality to games. In: Computer

38 (2005), Nr. 9, S. 25–32

[36] TATE, Richard ; HARITATOS, Jana ; COLE, Steve: HopeLab’s approach to Re-

Mission. (2009)

[37] STUTT, Tim: Why Educational Games Fail. http://etcjournal.com/2010/

10/18/why-educational-games-fail/, October 2010

[38] Marine Doom. 1996

[39] RIDDELL, Rob: Doom Goes To War. http://archive.wired.com/wired/

archive/5.04/ff_doom.html Last accessed: 2015/04/22, April 1997

[40] CRYTEK: CRYENGINE 3. October 2009. – Official Website: http://www.

cryengine.com/ Last accessed: 2015/04/22

[41] GIESELMANN, Hartmut: US-Armee nutzt CryEngine 3 für Militär-

Simulation. http://www.heise.de/newsticker/meldung/

US-Armee-nutzt-CryEngine-3-fuer-Militaer-Simulation-1252007.

html Last accessed: 2015/04/22, May 2011

[42] UNITED STATES ARMY: America’s Army. 2002 July. – Official Website: http:

//www.americasarmy.com/ Last accessed: 2015/04/22

94

http://etcjournal.com/2010/10/18/why-educational-games-fail/
http://etcjournal.com/2010/10/18/why-educational-games-fail/
http://archive.wired.com/wired/archive/5.04/ff_doom.html
http://archive.wired.com/wired/archive/5.04/ff_doom.html
http://www.cryengine.com/
http://www.cryengine.com/
http://www.heise.de/newsticker/meldung/US-Armee-nutzt-CryEngine-3-fuer-Militaer-Simulation-1252007.html
http://www.heise.de/newsticker/meldung/US-Armee-nutzt-CryEngine-3-fuer-Militaer-Simulation-1252007.html
http://www.heise.de/newsticker/meldung/US-Armee-nutzt-CryEngine-3-fuer-Militaer-Simulation-1252007.html
http://www.americasarmy.com/
http://www.americasarmy.com/

Bibliography

[43] TURSE, Nick: Guestdispatch: Zap, zap, you’re dead... http://www.

tomdispatch.com/post/1012/, October 2003

[44] PANDEMIC STUDIOS ; MASS MEDIA INC. (PS2) ; THQ (PUBLISHER): Full

Spectrum Warrior. June 2004. – Entry in MobyGames Database: http:

//www.mobygames.com/game/full-spectrum-warrior Last accessed:

2015/04/22

[45] ATARI INC.: Math Grand Prix. 1982. – Entry in MobyGames database: http://

www.mobygames.com/game/atari-2600/math-gran-prix Last accessed:

2015/04/22

[46] MAXIS SOFTWARE INC. ; OCEAN SOFTWARE LTD. (PUBLISHER): SimEarth.

1990. – Entry in MobyGames database: http://www.mobygames.com/game/

simearth-the-living-planet Last accessed: 2015/04/22

[47] FAKT SOFTWARE: Crazy Machines. 2004. – Official Website: http://www.

crazy-machines.com/ Last accessed: 2015/04/22

[48] Preisträger | Deutscher Computerspielpreis. http://

deutscher-computerspielpreis.de/preistraeger Last accessed:

2015/04/22, 2015

[49] Deutscher Computerspielpreis 2013: Auszeichnung für das

missio-Spiel "Menschen auf der Flucht" als bestes Seri-

ous Game. https://www.missio-hilft.de/de/aktion/

schutzengel/fuer-familien-in-not-weltweit/missio-truck/

2013-04-25-computerspielpreis.html Last accessed: 2015/04/22, April

2013

[50] STOBER, Jens M.: 1378km. December 2010. – Official Website: http://

1378km.de/ Last accessed: 2015/04/22

[51] VALVE CORPORATION ; SIERRA ENTERTAINMENT (PUBLISHER): Half-Life 2.

November 2004. – Official Website: http://orange.half-life2.com/ Last

accessed: 2015/04/24

95

http://www.tomdispatch.com/post/1012/
http://www.tomdispatch.com/post/1012/
http://www.mobygames.com/game/full-spectrum-warrior
http://www.mobygames.com/game/full-spectrum-warrior
http://www.mobygames.com/game/atari-2600/math-gran-prix
http://www.mobygames.com/game/atari-2600/math-gran-prix
http://www.mobygames.com/game/simearth-the-living-planet
http://www.mobygames.com/game/simearth-the-living-planet
http://www.crazy-machines.com/
http://www.crazy-machines.com/
http://deutscher-computerspielpreis.de/preistraeger
http://deutscher-computerspielpreis.de/preistraeger
https://www.missio-hilft.de/de/aktion/schutzengel/fuer-familien-in-not-weltweit/missio-truck/2013-04-25-computerspielpreis.html
https://www.missio-hilft.de/de/aktion/schutzengel/fuer-familien-in-not-weltweit/missio-truck/2013-04-25-computerspielpreis.html
https://www.missio-hilft.de/de/aktion/schutzengel/fuer-familien-in-not-weltweit/missio-truck/2013-04-25-computerspielpreis.html
http://1378km.de/
http://1378km.de/
http://orange.half-life2.com/

Bibliography

[52] GRAUPNER, Hardy: Computer game recreates hor-

rors of former East German border. http://www.dw.de/

computer-game-recreates-horrors-of-former-east-german-border/

a-6059839-1, September 2010

[53] REALTIME ASSOCIATES, INC. ; HOPELAB (PUBLISHER): Re-Mission. April 2006. –

Official Website: http://www.re-mission.net/, Last accessed: 2015/04/22

[54] SHELDON, Josh ; PERRY, Judy ; KLOPFER, Eric ; ONG, Jennifer ; CHEN, Vivian

Hsueh-Hua ; TZUO, Pei W. ; ROSENHECK, Louisa: Weatherlings: a new approach

to student learning using web-based mobile games. In: Proceedings of the Fifth

International Conference on the Foundations of Digital Games ACM, 2010, S.

203–208

[55] NIANTIC LABS ; GOOGLE INC. (PUBLISHER): Ingress. December 2013. – Official

Website: https://www.ingress.com/ Last accessed: 2015/04/22

[56] EPIC GAMES ; DIGITAL EXTREMES ; ATARI SA (PUBLISHER): Unreal Tournament

2004. March 2004. – Entry in MobyGames database: http://www.mobygames.

com/game/unreal-tournament-2004 Last accessed: 2015/04/22

[57] BLIZZARD ENTERTAINMENT: World of WarCraft. November 2004. – Official

Website: http://www.warcraft.com Last accessed: 2015/04/22

[58] NATHERA (COMMUNITY MANAGER): A Raid for All Seasons: Flexible

Raid Preview. http://us.battle.net/wow/en/blog/10175200/

a-raid-for-all-seasons-flexible-raid-preview-6-6-2013 Last

accessed: 2015/04/22, June 2013

[59] ARENANET, NCsoft (Publisher): Guild Wars 2. August 2012. – Official Website:

http://www.guildwars2.com/en/ Last accessed: 2015/04/22

[60] Dynamic level adjustment - Guild Wars 2 Wiki (GW2W). https://wiki.

guildwars2.com/wiki/Dynamic_level_adjustment, . – Official Wiki

[61] Level - The Fallout wiki - Fallout: New Vegas and more. http://fallout.

wikia.com/wiki/Level Last accessed: 2015/04/22,

96

http://www.dw.de/computer-game-recreates-horrors-of-former-east-german-border/a-6059839-1
http://www.dw.de/computer-game-recreates-horrors-of-former-east-german-border/a-6059839-1
http://www.dw.de/computer-game-recreates-horrors-of-former-east-german-border/a-6059839-1
http://www.re-mission.net/
https://www.ingress.com/
http://www.mobygames.com/game/unreal-tournament-2004
http://www.mobygames.com/game/unreal-tournament-2004
http://www.warcraft.com
http://us.battle.net/wow/en/blog/10175200/a-raid-for-all-seasons-flexible-raid-preview-6-6-2013
http://us.battle.net/wow/en/blog/10175200/a-raid-for-all-seasons-flexible-raid-preview-6-6-2013
http://www.guildwars2.com/en/
https://wiki.guildwars2.com/wiki/Dynamic_level_adjustment
https://wiki.guildwars2.com/wiki/Dynamic_level_adjustment
http://fallout.wikia.com/wiki/Level
http://fallout.wikia.com/wiki/Level

Bibliography

[62] BETHESDA GAME STUDIOS ; BETHESDA SOFTWORKS (PUBLISHER): Fallout 3.

October 2008. – Official Website: http://fallout.bethsoft.com/ Last

accessed: 2015/04/22

[63] VALVE ; ELECTRONIC ARTS (PUBLISHER RETAIL): Left 4 Dead. November 2008.

– Official Website: http://www.l4d.com/blog Last accessed: 2015/04/22

[64] NEWELL, Gabe: Gabe Newell Writes for Edge. https://web.archive.

org/web/20120515225357/http://www.edge-online.com/opinion/

gabe-newell-writes-edge (Archived version of 15th May 2012) Last

accessed: 2015/04/22, Decenber 2008

[65] GÖBEL, Stefan ; HARDY, Sandro ; STEINMETZ, Ralf ; CHA, Jongeun ; EL SADDIK,

Abdulmotaleb: Serious Games zur Prävention und Rehabilitation Serious Games

for Prevention and Rehabilitation. In: Proceedings of Ambient Assisted Living-

AAL-4. Deutscher Kongress: Demographischer Wandel-Assistenzsysteme aus

der Forschung in den Markt, 2011

[66] DOIGNON, Jean-Paul ; FALMAGNE, Jean-Claude: Spaces for the assessment of

knowledge. In: International journal of man-machine studies 23 (1985), Nr. 2, S.

175–196

[67] GÖBEL, Stefan ; WENDEL, Viktor ; RITTER, Christopher ; STEINMETZ, Ralf: Per-

sonalized, adaptive digital educational games using narrative game-based learn-

ing objects. In: Entertainment for Education. Digital Techniques and Systems.

Springer, 2010, S. 438–445

[68] MILLER, Scott: Auto-dynamic difficulty. http://dukenukem.typepad.com/

game_matters/2004/01/autoadjusting_g.html, January 2004

[69] REMEDY ENTERTAINMENT ; GATHERING OF DEVELOPERS (PUBLISHER PC) ;

ROCKSTAR GAMES (PUBLISHER CONSOLES AND MOBILE): Max Payne. July

2001. – Official Website: http://www.rockstargames.com/maxpayne/

main.html Last accessed: 2015/04/21

[70] CHARLES, Darryl ; BLACK, Michaela: Dynamic player modeling: A framework

for player-centered digital games. In: Proc. of the International Conference on

97

http://fallout.bethsoft.com/
http://www.l4d.com/blog
https://web.archive.org/web/20120515225357/http://www.edge-online.com/opinion/gabe-newell-writes-edge
https://web.archive.org/web/20120515225357/http://www.edge-online.com/opinion/gabe-newell-writes-edge
https://web.archive.org/web/20120515225357/http://www.edge-online.com/opinion/gabe-newell-writes-edge
http://dukenukem.typepad.com/game_matters/2004/01/autoadjusting_g.html
http://dukenukem.typepad.com/game_matters/2004/01/autoadjusting_g.html
http://www.rockstargames.com/maxpayne/main.html
http://www.rockstargames.com/maxpayne/main.html

Bibliography

Computer Games: Artificial Intelligence, Design and Education, 2004, S. 29–35

[71] GOLDSMITH, Thomas T. J. ; RAY MANN, Estle: cathode ray tube amusement

device. 1974. – Never sold or marketed to the public

[72]

[73] HIGINBOTHAM, William: Tennis for Two. October 1958. – Description of the

game: http://www.bnl.gov/about/history/firstvideo.php Last ac-

cessed: 2015/04/23

[74] KENT, Steven: The Ultimate History of Video Games: from Pong to Pokemon

and beyond... the story behind the craze that touched our li ves and changed the

world. Three Rivers Press, 2010

[75] MARINO-NACHISON, David: Ralph H. Baer, a father of video gaming, dies at

92. http://www.washingtonpost.com/national/health-science/

ralph-h-baer-a-father-of-video-gaming-dies-at-92/2014/

12/07/a24c8964-7e6e-11e4-8882-03cf08410beb_story.html Last

accessed: 2015/04/23, December 2014

[76] DREADBIT INC.: Ironcast. , March 2015. – Official Website: http://www.

dreadbit.com/Ironcast Last accesesd: 2015/04/24

[77] CHAPPLE, Craig: How procedural generation is be-

ing used to develop exciting new games | Analysis | De-

velo. http://www.develop-online.net/analysis/

how-procedural-generation-is-being-used-to-develop-exciting-new-games/

0195646 Last Accessed: 2015/04/26, July 2014. – Section "cutting costs"

[78] MegaTexture - Wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/MegaTexture,

[79] Gradient - Wikipedia, the free encyclopedia. http://en.wikipedia.org/

wiki/Gradient Last accessed: 2015/04/26,

[80] PERLIN, Ken: Ken’s Academy Award. http://mrl.nyu.edu/~perlin/doc/

oscar.html#noise Last accessed: 2014/04/23,

98

http://www.bnl.gov/about/history/firstvideo.php
http://www.washingtonpost.com/national/health-science/ralph-h-baer-a-father-of-video-gaming-dies-at-92/2014/12/07/a24c8964-7e6e-11e4-8882-03cf08410beb_story.html
http://www.washingtonpost.com/national/health-science/ralph-h-baer-a-father-of-video-gaming-dies-at-92/2014/12/07/a24c8964-7e6e-11e4-8882-03cf08410beb_story.html
http://www.washingtonpost.com/national/health-science/ralph-h-baer-a-father-of-video-gaming-dies-at-92/2014/12/07/a24c8964-7e6e-11e4-8882-03cf08410beb_story.html
http://www.dreadbit.com/Ironcast
http://www.dreadbit.com/Ironcast
http://www.develop-online.net/analysis/how-procedural-generation-is-being-used-to-develop-exciting-new-games/0195646
http://www.develop-online.net/analysis/how-procedural-generation-is-being-used-to-develop-exciting-new-games/0195646
http://www.develop-online.net/analysis/how-procedural-generation-is-being-used-to-develop-exciting-new-games/0195646
http://en.wikipedia.org/wiki/MegaTexture
http://en.wikipedia.org/wiki/MegaTexture
http://en.wikipedia.org/wiki/Gradient
http://en.wikipedia.org/wiki/Gradient
http://mrl.nyu.edu/~perlin/doc/oscar.html#noise
http://mrl.nyu.edu/~perlin/doc/oscar.html#noise

Bibliography

[81] PERLIN, Ken: Simplex Noise - Noise Hardware

[82] BURGER, Wilhelm: Gradientenbasierte Rauschfunktionen und Perlin Noise /

School of Informatics, Communications and Media, Upper Austria University of Ap-

plied Sciences. Version: November 2008. http://staff.fh-hagenberg.at/

burger/. Hagenberg, Austria, November 2008 (HGBTR08-02). – Forschungs-

bericht

[83] CHOMSKY, Noam: Three models for the description of language. In: Information

Theory, IRE Transactions on 2 (1956), Nr. 3, S. 113–124

[84] CHOMSKY, Noam: Syntactic structures. Walter de Gruyter, 2002

[85] DORMANS, Joris: Adventures in level design: generating missions and spaces for

action adventure games. In: Proceedings of the 2010 workshop on procedural

content generation in games ACM, 2010, S. 1

[86] DORMANS, Joris: Level design as model transformation: a strategy for auto-

mated content generation. In: Proceedings of the 2nd International Workshop on

Procedural Content Generation in Games ACM, 2011, S. 2

[87] LINDENMAYER, Aristid: Mathematical models for cellular interactions in devel-

opment I. Filaments with one-sided inputs. In: Journal of theoretical biology 18

(1968), Nr. 3, S. 280–299

[88] INTERACTIVE DATA VISUALIZATION, INC. (IDV): SpeedTree Animated Trees &

Plants Modeling & Render Software. http://www.speedtree.com/ Last ac-

cessed 2014/04/23,

[89] LEHRE, Per K.: Time-complexity Analysis of Evolutionary Algorithms. (2011)

[90] HASTINGS, Erin J. ; STANLEY, Kenneth O.: Interactive genetic engineering of

evolved video game content. In: Proceedings of the 2010 Workshop on Procedu-

ral Content Generation in Games ACM, 2010, S. 8

[91] KIEFF HTTP://EN.WIKIPEDIA.ORG/WIKI/USER:KIEFF: File:Gospers

glider gun.gif. http://commons.wikimedia.org/wiki/File:Gospers_

glider_gun.gif Last accessed: 2015/04/25, 2005

99

http://staff.fh-hagenberg.at/burger/
http://staff.fh-hagenberg.at/burger/
http://www.speedtree.com/
http://en.wikipedia.org/wiki/User:Kieff
http://commons.wikimedia.org/wiki/File:Gospers_glider_gun.gif
http://commons.wikimedia.org/wiki/File:Gospers_glider_gun.gif

Bibliography

[92] GARDNER, Martin: Mathematical games: The fantastic combinations of John

Conway’s new solitaire game “life”. In: Scientific American 223 (1970), Nr. 4, S.

120–123

[93] JOHNSON, Lawrence ; YANNAKAKIS, Georgios N. ; TOGELIUS, Julian: Cellular

automata for real-time generation of infinite cave levels. In: Proceedings of the

2010 Workshop on Procedural Content Generation in Games ACM, 2010, S. 10

[94] TOMASSINI, Marco ; SIPPER, Moshe ; PERRENOUD, Mathieu: On the genera-

tion of high-quality random numbers by two-dimensional cellular automata. In:

Computers, IEEE Transactions on 49 (2000), Nr. 10, S. 1146–1151

[95] CHOWDHURY, D R. ; BASU, Saugata ; GUPTA, I S. ; CHAUDHURI, P P.: Design of

CAECC-Cellular automata based error correcting code. In: IEEE Transactions on

Computers 43 (1994), Nr. 6, S. 759–764

[96] OLSEN, Jacob: Realtime procedural terrain generation. (2004)

[97] ODDLABS: Tribal Trouble. http://oddlabs.com/tribaltrouble/ Last ac-

cessed: 2014/04/23, 2005

[98] ODDLABS: sunenielsen/tribaltrouble · GitHub. https://github.com/

sunenielsen/tribaltrouble Last accessed: 2015/04/23, 2014

[99] NEIDHOLD, Benjamin ; WACKER, Markus ; DEUSSEN, Oliver: Interactive physically

based fluid and erosion simulation. (2005)

[100] The Elder Scrolls II: Daggerfall (Game) - Giant Bomb. http://www.

giantbomb.com/the-elder-scrolls-ii-daggerfall/3030-1129/

Last accessed: 2015/04/23, June 2014. – Giant Bomb Wiki

[101] KUSHNER, David: Masters of Doom: How Two Guys Created an Empire and

Transformed Pop Culture. Random House, 2003

[102] QuakeC - Wikipedia, the free encyclopedia. http://en.wikipedia.org/

wiki/QuakeC,

100

http://oddlabs.com/tribaltrouble/
https://github.com/sunenielsen/tribaltrouble
https://github.com/sunenielsen/tribaltrouble
http://www.giantbomb.com/the-elder-scrolls-ii-daggerfall/3030-1129/
http://www.giantbomb.com/the-elder-scrolls-ii-daggerfall/3030-1129/
http://en.wikipedia.org/wiki/QuakeC
http://en.wikipedia.org/wiki/QuakeC

Bibliography

[103] GESTALT: The Engine Licensing Game -The ups and downs of licensing a game

engine. http://www.eurogamer.net/articles/engines Last accessed:

2015/04/25, June 2000

[104] GOODKIND, Nicole: How the video game industry became bigger than

movies and music. http://finance.yahoo.com/blogs/daily-ticker/

how-the-video-game-industry-became-bigger-than-movies-and-music-171225174.

html Last accessed: 2015/04/23, June 2014

[105] EPIC GAMES: Unreal Engine. 1998. – Official Website: https://www.

unrealengine.com/ Last accessed: 2015/04/23

[106] PETERSON, Steve: Next-gen consoles mean increased devel-

opment costs. http://www.gamesindustry.biz/articles/

2012-04-03-next-gen-consoles-mean-increased-development-costs

Last accessed: 2015/04/26, April 2012

[107] HAXE FOUNDATION: Haxe. 2005. – Official Website: http://www.haxe.org

[108] ASCII CORPORATION ; ENTERBRAIN ; AGETEC ; DEGICA CO., LTD.: RPGMaker.

1988. – Official Website:http://www.rpgmakerweb.com/

[109] UNITY TECHNOLOGIES: Unity. June 2008. – Official Website: http://unity3d.

com/ Last accessed: 2015/04/23

[110] List of game engines - Wikipedia, the free encyclopedia. https://

en.wikipedia.org/wiki/List_of_game_engines. – Last accessed:

2014/10/25

[111] DevDB - Database of Game Development Resources | DevMaster. http://

devmaster.net/devdb/. – Last accessed: 2014/10/25

[112] DevMaster - game development news, discussions, and resources. http://

www.http://devmaster.net/. – Last accessed: 2014/10/25

[113] DAVIS, Ray: Unreal Engine 4 Goes Free for Aca-

demic Use. https://www.unrealengine.com/blog/

101

http://www.eurogamer.net/articles/engines
http://finance.yahoo.com/blogs/daily-ticker/how-the-video-game-industry-became-bigger-than-movies-and-music-171225174.html
http://finance.yahoo.com/blogs/daily-ticker/how-the-video-game-industry-became-bigger-than-movies-and-music-171225174.html
http://finance.yahoo.com/blogs/daily-ticker/how-the-video-game-industry-became-bigger-than-movies-and-music-171225174.html
https://www.unrealengine.com/
https://www.unrealengine.com/
http://www.gamesindustry.biz/articles/2012-04-03-next-gen-consoles-mean-increased-development-costs
http://www.gamesindustry.biz/articles/2012-04-03-next-gen-consoles-mean-increased-development-costs
http://www.haxe.org
http://www.rpgmakerweb.com/
http://unity3d.com/
http://unity3d.com/
https://en.wikipedia.org/wiki/List_of_game_engines
https://en.wikipedia.org/wiki/List_of_game_engines
http://devmaster.net/devdb/
http://devmaster.net/devdb/
http://www.http://devmaster.net/
http://www.http://devmaster.net/
https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use
https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use
https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use

Bibliography

unreal-engine-4-goes-free-for-academic-use. Version: 2014. –

Last accessed: 2014/10/25

[114] BLENDER FOUNDATION: Blender Game Engine. October 2013. – Official Website:

http://www.blender.org Last accessed: 2015/04/23

[115] ROOSENDAAL, Ton: Blender roadmap - 2.7, 2.8 and beyond |

Blender Code. http://code.blender.org/index.php/2013/06/

blender-roadmap-2-7-2-8-and-beyond/. – Last accessed: 2014/10/28

[116] EPIC GAMES: Unreal Engine 4 Commercial Game Deployment Guidelines.

https://www.unrealengine.com/release Last accessed: 2015/04/26,

[117] DOCKTER, Hans ; MURDOCH, Adam ; FABER, Szczepan ; NIEDERWIESER, Peter

; DALEY, Luke ; GRÖSCHKE, Rene ; DEBOER, Daz ; APPLING, Steve: Gradle.

February 2015. – Official Website: http://www.gradle.org/ Last accessed:

2015/04/23

[118] Esenthel Engine - Next-Gen Game Engine for Windows, Mac, Linux, Android,

iOS and Web. http://esenthel.com/?id=feature_list Last accessed:

2015/04/23, . – Features List

[119] UNITY TECHNOLOGIES: Unity - Fast Facts. http://unity3d.com/

public-relations Last accessed: 2015/04/23,

[120] INXILE ENTERTAINMENT: Wasteland 2. September 2014. – Official Website:

https://wasteland.inxile-entertainment.com/

[121] INXILE ENTERTAINMENT: Wasteland 2 by inXile entertainment - Kickstarter.

https://www.kickstarter.com/projects/inxile/wasteland-2/

description Last accessed: 2015/04/23, March 2013

[122] UNITY TECHNOLOGIES: Unity - Collaboration - Unity Team License. http://

unity3d.com/unity/collaboration Last accessed: 2015/04/24,

[123] ID SOFTWARE (JOHN CARMACK, JOHN ROMERO, DAVE TAYLOR): Doom engine

(id tech 1). December 1993. – Developer Website: http://www.idsoftware.

102

https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use
https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use
https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use
http://www.blender.org
http://code.blender.org/index.php/2013/06/blender-roadmap-2-7-2-8-and-beyond/
http://code.blender.org/index.php/2013/06/blender-roadmap-2-7-2-8-and-beyond/
https://www.unrealengine.com/release
http://www.gradle.org/
http://esenthel.com/?id=feature_list
http://unity3d.com/public-relations
http://unity3d.com/public-relations
https://wasteland.inxile-entertainment.com/
https://www.kickstarter.com/projects/inxile/wasteland-2/description
https://www.kickstarter.com/projects/inxile/wasteland-2/description
http://unity3d.com/unity/collaboration
http://unity3d.com/unity/collaboration
http://www.idsoftware.com/
http://www.idsoftware.com/
http://www.idsoftware.com/

Bibliography

com/ Last accessed: 2015/04/23. Source Code: https://github.com/

id-Software Last accesed: 2015/04/23

[124] SILVERMAN, Ken: Build Engine. – Source Code: http://advsys.net/ken/

buildsrc/ Last accessed: 2015/04/23

[125] SANGLARD, Fabien: Doom engine code review. http://fabiensanglard.

net/doomIphone/doomClassicRenderer.php, January 2011

[126] SCRAWK: Simple procedural terrain in Unity |

ScrawkBlog. http://scrawkblog.com/2013/05/15/

simple-procedural-terrain-in-unity/, May 2013

[127] BLOOM, Charles: Terrain Texture Compositing by Blending in the Frame-

Buffer. http://www.cbloom.com/3d/techdocs/splatting.txt, Novem-

ber 2000

[128] UNITY TECHNOLOGIES: Procedural Examples. https://www.assetstore.

unity3d.com/en/#!/content/5141 Last accessed: 2015/04/25, November

2012

[129] DINH, Phi: TinyKeep. http://store.steampowered.com/app/278620/

Last accessed: 2015/04/23, September 2014. – Official Website: http://

tinykeep.com/

[130] DINH, Phi: Phi talks about Random Dungeon Generation in Unity - YouTube.

https://www.youtube.com/watch?v=XwNXtSFQF8Q, 02 2014

[131] Gabriel graph - Wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/Gabriel_graph,

[132] TOUSSAINT, Godfried T.: The relative neighbourhood graph of a finite planar set.

In: Pattern recognition 12 (1980), Nr. 4, S. 261–268

[133] SYNTAXTREE: Visual Studio Tools for Unity. http://www.unityvs.co, 2011

[134] XAMARIN: Mono. June 2004. – Official Website: http://www.mono-project.

com/ Last accessed: 2015/04/23

103

http://www.idsoftware.com/
http://www.idsoftware.com/
http://www.idsoftware.com/
https://github.com/id-Software
https://github.com/id-Software
http://advsys.net/ken/buildsrc/
http://advsys.net/ken/buildsrc/
http://fabiensanglard.net/doomIphone/doomClassicRenderer.php
http://fabiensanglard.net/doomIphone/doomClassicRenderer.php
http://scrawkblog.com/2013/05/15/simple-procedural-terrain-in-unity/
http://scrawkblog.com/2013/05/15/simple-procedural-terrain-in-unity/
http://www.cbloom.com/3d/techdocs/splatting.txt
https://www.assetstore.unity3d.com/en/#!/content/5141
https://www.assetstore.unity3d.com/en/#!/content/5141
http://store.steampowered.com/app/278620/
http://tinykeep.com/
http://tinykeep.com/
https://www.youtube.com/watch?v=XwNXtSFQF8Q
http://en.wikipedia.org/wiki/Gabriel_graph
http://en.wikipedia.org/wiki/Gabriel_graph
http://www.unityvs.co
http://www.mono-project.com/
http://www.mono-project.com/

Bibliography

[135] GEIGER, Christian ; POGSCHEBA, Patrick: Spieltrieb - Unity Tutorial, Teil 1 - Erste

Schritte mit der Game Engine. In: iX Developer Sonderheft Spiele entwickeln

(2015), S. 129–137

104

Glossary

2.5D terrain Simple form of terrain description, using a 2D map with a value at each

X/Y-coordinate (X/Z in some cases) defining the height. Major downside is that

multiple levels of terrain and overhangs are not possible. 37, 41, 44, 46

bot Computer-controlled characters in an otherwise for multiple human players made

game. 12

graphical user interface Drawn interface on screen with which the user can interact

with an application. Typical elements are text-labels, buttons and drop-down lists.

Possible input devices mouse and keyboard or touch-based devices.. 35

GUI graphical user interface. 35, 57

heightmap Raster image that stores values that specify the elevation of a point in

relation to a presumed floor plainss. 8, 19, 38, 41, 42, 44, 53, 54, 85

IDE Integrated Development Environment. 28, 32

massivly multiplayer online role-playing game description. 12

MMORPG massivly multiplayer online role-playing game. 12

PCG procedurally generated content. 34

Perlin noise Noise function created by Ken Perlin, generates plasma fractals.[30] and

[31]. 41, 44, 53

105

	Abstract
	Acknowledgments
	Motivation
	Serious Games
	Procedural Content Generation
	Goal

	Related Work
	Procedural Content Generation
	Serious Games
	Adaptivity

	Theoretical Background
	Video Games
	Serious Games
	Procedural Content Generation

	Technical Background
	Game Engine
	Engine Selection
	Data Structures

	Application
	General
	Adaptivity
	Game Concept

	Development of a PCG Module in Unity
	Unity Engine
	Procedural Content Generation Package

	Conclusion
	Limitations and Future Work
	Levels
	Presentation
	Adaptivity
	Interfaces

	Appendix
	Cost-Utility Analysis
	Engine Cost-Utility Analysis
	Production Rules for Mission Generation

